Step * 1 of Lemma mtb-cantor-map-onto-common


1. [X] Type
2. metric(X)
3. cmplt mcomplete(X with d)
4. mtb m-TB(X;d)
5. : ℕ
6. X
7. X
8. mdist(d;x;y) ≤ (r1/r(n 1))
9. m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10. m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x))) mtb-seq(mtb;mtb-point-cantor(mtb;x)) ∈ (ℕ ⟶ X)
11. ∀[s:ℕ ⟶ X]. k.(6 k) ∈ mcauchy(d;n.m-regularize(d;s) n))
12. mtb-cantor(mtb) ⊆(i:ℕn ⟶ ℕ(fst(mtb)) i)
13. mtb-point-cantor(mtb;x)
i.if i <then mtb-point-cantor(mtb;x) else mtb-point-cantor(mtb;y) fi )
∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)
⊢ mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x)) ≡ x
BY
(Unfold `mtb-cantor-map` THEN (BLemma `cauchy-mlimit-unique` THEN Auto) THEN RWO "-4" THEN Auto) }


Latex:


Latex:

1.  [X]  :  Type
2.  d  :  metric(X)
3.  cmplt  :  mcomplete(X  with  d)
4.  mtb  :  m-TB(X;d)
5.  n  :  \mBbbN{}
6.  x  :  X
7.  y  :  X
8.  mdist(d;x;y)  \mleq{}  (r1/r(n  +  1))
9.  m-k-regular(d;1;mtb-seq(mtb;mtb-point-cantor(mtb;x)))
10.  m-regularize(d;mtb-seq(mtb;mtb-point-cantor(mtb;x)))  =  mtb-seq(mtb;mtb-point-cantor(mtb;x))
11.  \mforall{}[s:\mBbbN{}  {}\mrightarrow{}  X].  (\mlambda{}k.(6  *  k)  \mmember{}  mcauchy(d;n.m-regularize(d;s)  n))
12.  mtb-cantor(mtb)  \msubseteq{}r  (i:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}(fst(mtb))  i)
13.  mtb-point-cantor(mtb;x)
=  (\mlambda{}i.if  i  <z  n  then  mtb-point-cantor(mtb;x)  i  else  mtb-point-cantor(mtb;y)  i  fi  )
\mvdash{}  mtb-cantor-map(d;cmplt;mtb;mtb-point-cantor(mtb;x))  \mequiv{}  x


By


Latex:
(Unfold  `mtb-cantor-map`  0  THEN  (BLemma  `cauchy-mlimit-unique`  THEN  Auto)  THEN  RWO  "-4"  0  THEN  Auto)




Home Index