Nuprl Lemma : mtb-cantor-map-onto-common

[X:Type]
  ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀n:ℕ. ∀x,y:X.
    ((mdist(d;x;y) ≤ (r1/r(n 1)))
     (∃p,q:mtb-cantor(mtb)
         ((p q ∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)) ∧ mtb-cantor-map(d;cmplt;mtb;p) ≡ x ∧ mtb-cantor-map(d;cmplt;mtb;q) ≡ y)))


Proof




Definitions occuring in Statement :  mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) mcomplete: mcomplete(M) mk-metric-space: with d mdist: mdist(d;x;y) meq: x ≡ y metric: metric(X) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False mtb-cantor: mtb-cantor(mtb) m-TB: m-TB(X;d) so_lambda: λ2x.t[x] pi1: fst(t) subtype_rel: A ⊆B nat_plus: + so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: istype: istype(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B rneq: x ≠ y mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p) metric: metric(X) true: True m-k-regular: m-k-regular(d;k;s) mtb-point-cantor: mtb-point-cantor(mtb;p) mtb-seq: mtb-seq(mtb;s) spreadn: spread3 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rleq: x ≤ y rnonneg: rnonneg(x) int_upper: {i...} req_int_terms: t1 ≡ t2 sq_stable: SqStable(P) rat_term_to_real: rat_term_to_real(f;t) rtermAdd: left "+" right rat_term_ind: rat_term_ind rtermDivide: num "/" denom rtermConstant: "const" rtermVar: rtermVar(var) pi2: snd(t) mconverges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]]
Lemmas referenced :  mtb-point-cantor-seq-regular m-regularize-of-regular mtb-seq_wf mtb-point-cantor_wf m-k-regular-monotone istype-void istype-le istype-false m-regularize-mcauchy subtype_rel_dep_function nat_wf int_seg_wf nat_plus_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf int_seg_subtype_nat lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than intformless_wf int_formula_prop_less_lemma meq_wf mtb-cantor-map_wf rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int decidable__lt itermAdd_wf int_term_value_add_lemma rless_wf istype-nat m-TB_wf mcomplete_wf mk-metric-space_wf metric_wf istype-universe cauchy-mlimit-unique mconverges-to_wf squash_wf true_wf real_wf subtype_rel_self iff_weakening_equal mtb-seq-mtb-point-cantor-mconverges-to m-regularize_wf rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening le_witness_for_triv rleq-int-fractions int_upper_properties itermMultiply_wf int_term_value_mul_lemma rleq_transitivity istype-int_upper itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma mdist-triangle-inequality radd_wf radd_functionality_wrt_rleq upper_subtype_nat sq_stable__le rleq_functionality radd_functionality req_weakening mdist-symm assert-rat-term-eq2 rtermAdd_wf rtermDivide_wf rtermConstant_wf rtermVar_wf rneq-int intformeq_wf int_formula_prop_eq_lemma set_subtype_base le_wf int_subtype_base real_term_value_add_lemma imax_wf imax_nat nat_plus_properties imax_ub
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache hypothesis independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule voidElimination setElimination rename productElimination lambdaEquality_alt applyEquality independent_pairEquality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination universeIsType imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt equalityElimination promote_hyp instantiate cumulativity functionExtensionality_alt productIsType functionIsType closedConclusion addEquality inrFormation_alt universeEquality functionExtensionality imageMemberEquality baseClosed functionIsTypeImplies multiplyEquality baseApply intEquality sqequalBase dependent_set_memberFormation_alt applyLambdaEquality inlFormation_alt

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}mtb:m-TB(X;d).  \mforall{}n:\mBbbN{}.  \mforall{}x,y:X.
        ((mdist(d;x;y)  \mleq{}  (r1/r(n  +  1)))
        {}\mRightarrow{}  (\mexists{}p,q:mtb-cantor(mtb)
                  ((p  =  q)  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;p)  \mequiv{}  x  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;q)  \mequiv{}  y)))



Date html generated: 2019_10_30-AM-07_05_38
Last ObjectModification: 2019_10_09-PM-03_18_32

Theory : reals


Home Index