Nuprl Lemma : mtb-cantor-map-onto-common
∀[X:Type]
  ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀n:ℕ. ∀x,y:X.
    ((mdist(d;x;y) ≤ (r1/r(n + 1)))
    
⇒ (∃p,q:mtb-cantor(mtb)
         ((p = q ∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)) ∧ mtb-cantor-map(d;cmplt;mtb;p) ≡ x ∧ mtb-cantor-map(d;cmplt;mtb;q) ≡ y)))
Proof
Definitions occuring in Statement : 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
, 
mtb-cantor: mtb-cantor(mtb)
, 
m-TB: m-TB(X;d)
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
mdist: mdist(d;x;y)
, 
meq: x ≡ y
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
mtb-cantor: mtb-cantor(mtb)
, 
m-TB: m-TB(X;d)
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
istype: istype(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
rneq: x ≠ y
, 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p)
, 
metric: metric(X)
, 
true: True
, 
m-k-regular: m-k-regular(d;k;s)
, 
mtb-point-cantor: mtb-point-cantor(mtb;p)
, 
mtb-seq: mtb-seq(mtb;s)
, 
spreadn: spread3, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
int_upper: {i...}
, 
req_int_terms: t1 ≡ t2
, 
sq_stable: SqStable(P)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermAdd: left "+" right
, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom
, 
rtermConstant: "const"
, 
rtermVar: rtermVar(var)
, 
pi2: snd(t)
, 
mconverges-to: lim n→∞.x[n] = y
, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
mtb-point-cantor-seq-regular, 
m-regularize-of-regular, 
mtb-seq_wf, 
mtb-point-cantor_wf, 
m-k-regular-monotone, 
istype-void, 
istype-le, 
istype-false, 
m-regularize-mcauchy, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_wf, 
nat_plus_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_subtype_nat, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
intformless_wf, 
int_formula_prop_less_lemma, 
meq_wf, 
mtb-cantor-map_wf, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
rless_wf, 
istype-nat, 
m-TB_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe, 
cauchy-mlimit-unique, 
mconverges-to_wf, 
squash_wf, 
true_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mtb-seq-mtb-point-cantor-mconverges-to, 
m-regularize_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
le_witness_for_triv, 
rleq-int-fractions, 
int_upper_properties, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_transitivity, 
istype-int_upper, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
mdist-triangle-inequality, 
radd_wf, 
radd_functionality_wrt_rleq, 
upper_subtype_nat, 
sq_stable__le, 
rleq_functionality, 
radd_functionality, 
req_weakening, 
mdist-symm, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
real_term_value_add_lemma, 
imax_wf, 
imax_nat, 
nat_plus_properties, 
imax_ub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
applyEquality, 
independent_pairEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
functionExtensionality_alt, 
productIsType, 
functionIsType, 
closedConclusion, 
addEquality, 
inrFormation_alt, 
universeEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
multiplyEquality, 
baseApply, 
intEquality, 
sqequalBase, 
dependent_set_memberFormation_alt, 
applyLambdaEquality, 
inlFormation_alt
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}mtb:m-TB(X;d).  \mforall{}n:\mBbbN{}.  \mforall{}x,y:X.
        ((mdist(d;x;y)  \mleq{}  (r1/r(n  +  1)))
        {}\mRightarrow{}  (\mexists{}p,q:mtb-cantor(mtb)
                  ((p  =  q)  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;p)  \mequiv{}  x  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;q)  \mequiv{}  y)))
Date html generated:
2019_10_30-AM-07_05_38
Last ObjectModification:
2019_10_09-PM-03_18_32
Theory : reals
Home
Index