Nuprl Lemma : mtb-cantor-map-onto-common
∀[X:Type]
  ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀mtb:m-TB(X;d). ∀n:ℕ. ∀x,y:X.
    ((mdist(d;x;y) ≤ (r1/r(n + 1)))
    ⇒ (∃p,q:mtb-cantor(mtb)
         ((p = q ∈ (i:ℕn ⟶ ℕ(fst(mtb)) i)) ∧ mtb-cantor-map(d;cmplt;mtb;p) ≡ x ∧ mtb-cantor-map(d;cmplt;mtb;q) ≡ y)))
Proof
Definitions occuring in Statement : 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p), 
mtb-cantor: mtb-cantor(mtb), 
m-TB: m-TB(X;d), 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
mdist: mdist(d;x;y), 
meq: x ≡ y, 
metric: metric(X), 
rdiv: (x/y), 
rleq: x ≤ y, 
int-to-real: r(n), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uimplies: b supposing a, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
mtb-cantor: mtb-cantor(mtb), 
m-TB: m-TB(X;d), 
so_lambda: λ2x.t[x], 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
istype: istype(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
rneq: x ≠ y, 
mtb-cantor-map: mtb-cantor-map(d;cmplt;mtb;p), 
metric: metric(X), 
true: True, 
m-k-regular: m-k-regular(d;k;s), 
mtb-point-cantor: mtb-point-cantor(mtb;p), 
mtb-seq: mtb-seq(mtb;s), 
spreadn: spread3, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
int_upper: {i...}, 
req_int_terms: t1 ≡ t2, 
sq_stable: SqStable(P), 
rat_term_to_real: rat_term_to_real(f;t), 
rtermAdd: left "+" right, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom, 
rtermConstant: "const", 
rtermVar: rtermVar(var), 
pi2: snd(t), 
mconverges-to: lim n→∞.x[n] = y, 
sq_exists: ∃x:A [B[x]]
Lemmas referenced : 
mtb-point-cantor-seq-regular, 
m-regularize-of-regular, 
mtb-seq_wf, 
mtb-point-cantor_wf, 
m-k-regular-monotone, 
istype-void, 
istype-le, 
istype-false, 
m-regularize-mcauchy, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_wf, 
nat_plus_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_subtype_nat, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
intformless_wf, 
int_formula_prop_less_lemma, 
meq_wf, 
mtb-cantor-map_wf, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
rless_wf, 
istype-nat, 
m-TB_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe, 
cauchy-mlimit-unique, 
mconverges-to_wf, 
squash_wf, 
true_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
mtb-seq-mtb-point-cantor-mconverges-to, 
m-regularize_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
le_witness_for_triv, 
rleq-int-fractions, 
int_upper_properties, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_transitivity, 
istype-int_upper, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
mdist-triangle-inequality, 
radd_wf, 
radd_functionality_wrt_rleq, 
upper_subtype_nat, 
sq_stable__le, 
rleq_functionality, 
radd_functionality, 
req_weakening, 
mdist-symm, 
assert-rat-term-eq2, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
real_term_value_add_lemma, 
imax_wf, 
imax_nat, 
nat_plus_properties, 
imax_ub
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
applyEquality, 
independent_pairEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
functionExtensionality_alt, 
productIsType, 
functionIsType, 
closedConclusion, 
addEquality, 
inrFormation_alt, 
universeEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
functionIsTypeImplies, 
multiplyEquality, 
baseApply, 
intEquality, 
sqequalBase, 
dependent_set_memberFormation_alt, 
applyLambdaEquality, 
inlFormation_alt
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}mtb:m-TB(X;d).  \mforall{}n:\mBbbN{}.  \mforall{}x,y:X.
        ((mdist(d;x;y)  \mleq{}  (r1/r(n  +  1)))
        {}\mRightarrow{}  (\mexists{}p,q:mtb-cantor(mtb)
                  ((p  =  q)  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;p)  \mequiv{}  x  \mwedge{}  mtb-cantor-map(d;cmplt;mtb;q)  \mequiv{}  y)))
 Date html generated: 
2019_10_30-AM-07_05_38
 Last ObjectModification: 
2019_10_09-PM-03_18_32
Theory : reals
Home
Index