Step
*
of Lemma
near-real-implies-real
∀[x:ℕ+ ⟶ ℤ]. ∀[y:ℝ]. x ∈ {x:ℝ| x = y} supposing ∀n:ℕ+. (|(x within 1/n) - y| ≤ (r1/r(n)))
BY
{ (Auto THEN ExRepD THEN (Assert x ∈ ℝ BY (BLemma `implies-real` THEN Auto))) }
1
1. x : ℕ+ ⟶ ℤ
2. y : ℝ
3. ∀n:ℕ+. (|(x within 1/n) - y| ≤ (r1/r(n)))
4. n : ℕ+
5. m : ℕ+
⊢ |(x within 1/n) - (x within 1/m)| ≤ ((r1/r(n)) + (r1/r(m)))
2
1. x : ℕ+ ⟶ ℤ
2. y : ℝ
3. ∀n:ℕ+. (|(x within 1/n) - y| ≤ (r1/r(n)))
4. x ∈ ℝ
⊢ x ∈ {x:ℝ| x = y}
Latex:
Latex:
\mforall{}[x:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. \mforall{}[y:\mBbbR{}]. x \mmember{} \{x:\mBbbR{}| x = y\} supposing \mforall{}n:\mBbbN{}\msupplus{}. (|(x within 1/n) - y| \mleq{} (r1/r(n)))
By
Latex:
(Auto THEN ExRepD THEN (Assert x \mmember{} \mBbbR{} BY (BLemma `implies-real` THEN Auto)))
Home
Index