Nuprl Lemma : near-real-implies-real
∀[x:ℕ+ ⟶ ℤ]. ∀[y:ℝ].  x ∈ {x:ℝ| x = y}  supposing ∀n:ℕ+. (|(x within 1/n) - y| ≤ (r1/r(n)))
Proof
Definitions occuring in Statement : 
rational-approx: (x within 1/n)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
implies-real, 
nat_plus_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rational-approx_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
rleq_functionality_wrt_implies, 
radd_wf, 
rleq_weakening_equal, 
r-triangle-inequality2, 
radd_functionality_wrt_rleq, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
req-iff-rabs-rleq, 
mul_nat_plus, 
less_than_wf, 
rational-approx-property, 
req_wf, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rmul_wf, 
rleq-int-fractions, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
uiff_transitivity, 
req_transitivity, 
radd_functionality, 
req_inversion, 
rmul-identity1, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-int-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
inrFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
addEquality
Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[y:\mBbbR{}].    x  \mmember{}  \{x:\mBbbR{}|  x  =  y\}    supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (|(x  within  1/n)  -  y|  \mleq{}  (r1/r(n)))
Date html generated:
2016_10_26-AM-09_18_34
Last ObjectModification:
2016_08_29-PM-00_37_31
Theory : reals
Home
Index