Nuprl Lemma : near-real-implies-real

[x:ℕ+ ⟶ ℤ]. ∀[y:ℝ].  x ∈ {x:ℝy}  supposing ∀n:ℕ+(|(x within 1/n) y| ≤ (r1/r(n)))


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] prop: so_lambda: λ2x.t[x] nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  implies-real nat_plus_wf all_wf rleq_wf rabs_wf rsub_wf rational-approx_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf rleq_functionality_wrt_implies radd_wf rleq_weakening_equal r-triangle-inequality2 radd_functionality_wrt_rleq rleq_functionality rabs-difference-symmetry req_weakening req-iff-rabs-rleq mul_nat_plus less_than_wf rational-approx-property req_wf itermMultiply_wf int_term_value_mul_lemma rmul_wf rleq-int-fractions decidable__le intformle_wf int_formula_prop_le_lemma uiff_transitivity req_transitivity radd_functionality req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-int-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaFormation hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lambdaEquality functionExtensionality applyEquality because_Cache natural_numberEquality setElimination rename inrFormation dependent_functionElimination productElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality dependent_set_memberEquality imageMemberEquality baseClosed multiplyEquality addEquality

Latex:
\mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[y:\mBbbR{}].    x  \mmember{}  \{x:\mBbbR{}|  x  =  y\}    supposing  \mforall{}n:\mBbbN{}\msupplus{}.  (|(x  within  1/n)  -  y|  \mleq{}  (r1/r(n)))



Date html generated: 2016_10_26-AM-09_18_34
Last ObjectModification: 2016_08_29-PM-00_37_31

Theory : reals


Home Index