Nuprl Lemma : req-iff-rabs-rleq

x,y:ℝ.  (x ⇐⇒ ∀m:ℕ+(|x y| ≤ (r1/r(m))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y req: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_apply: x[s] subtype_rel: A ⊆B true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) absval: |i| itermConstant: "const" req_int_terms: t1 ≡ t2 rdiv: (x/y) squash: T sq_exists: x:{A| B[x]} rless: x < y
Lemmas referenced :  nat_plus_wf req_wf all_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf absval_wf rinv_wf2 rmul_wf rleq-int-fractions2 decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma rleq_functionality rabs_functionality rsub_functionality req_weakening uiff_transitivity2 real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity real_term_value_mul_lemma rinv-as-rdiv squash_wf true_wf rabs-int rless_transitivity1 rless_irreflexivity small-reciprocal-real req-iff-not-rneq rneq-iff-rabs rneq_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality natural_numberEquality setElimination rename because_Cache independent_isectElimination inrFormation dependent_functionElimination productElimination independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality minusEquality multiplyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed impliesFunctionality addLevel lemma_by_obid dependent_set_memberEquality

Latex:
\mforall{}x,y:\mBbbR{}.    (x  =  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}m:\mBbbN{}\msupplus{}.  (|x  -  y|  \mleq{}  (r1/r(m))))



Date html generated: 2017_10_03-AM-09_06_12
Last ObjectModification: 2017_07_28-AM-07_41_59

Theory : reals


Home Index