Nuprl Lemma : proper-continuous-maps-compact

I:Interval. ∀f:I ⟶ℝ.  (f[x] (proper)continuous for x ∈  maps-compact-proper(I;(-∞, ∞);x.f[x]))


Proof




Definitions occuring in Statement :  maps-compact-proper: maps-compact-proper(I;J;x.f[x]) proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ riiint: (-∞, ∞) interval: Interval so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  so_apply: x[s] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2x.t[x] subtype_rel: A ⊆B squash: T sq_stable: SqStable(P) prop: false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) and: P ∧ Q uall: [x:A]. B[x] nat_plus: + member: t ∈ T maps-compact-proper: maps-compact-proper(I;J;x.f[x]) implies:  Q all: x:A. B[x] true: True cand: c∧ B guard: {T} subinterval: I ⊆  iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) riiint: (-∞, ∞) i-approx: i-approx(I;n) btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) rccint: [l, u] i-finite: i-finite(I) iproper: iproper(I) lower-bound: lower-bound(A;b) inf: inf(A) b rset-member: x ∈ A rrange: f[x](x∈I) sup: sup(A) b upper-bound: A ≤ b

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]  (proper)continuous  for  x  \mmember{}  I  {}\mRightarrow{}  maps-compact-proper(I;(-\minfty{},  \minfty{});x.f[x]))



Date html generated: 2020_05_20-PM-00_26_53
Last ObjectModification: 2019_12_28-AM-11_09_14

Theory : reals


Home Index