Step
*
1
1
of Lemma
proper-continuous-maps-compact
1. I : Interval
2. f : I ⟶ℝ
3. f[x] (proper)continuous for x ∈ I
4. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))} 
5. i-approx(I;n) ⊆ I 
6. mc : f[x] continuous for x ∈ i-approx(I;n)
7. inf(f[x](x∈i-approx(I;n))) = inf{f[x]|x ∈ i-approx(I;n)}
8. sup(f[x](x∈i-approx(I;n))) = sup{f[x]|x ∈ i-approx(I;n)}
9. ∃m:ℕ+. ((r(-m) ≤ inf{f[x]|x ∈ i-approx(I;n)}) ∧ (sup{f[x]|x ∈ i-approx(I;n)} ≤ r(m)))
⊢ ∃m:{m:ℕ+| icompact(i-approx((-∞, ∞);m)) ∧ iproper(i-approx((-∞, ∞);m))} 
   ∀x:{x:ℝ| x ∈ i-approx(I;n)} . (f[x] ∈ i-approx((-∞, ∞);m))
BY
{ (D (-1) THEN With ⌜m⌝ (D 0)⋅ THEN Auto THEN RepUR ``i-approx`` 0) }
1
1. I : Interval
2. f : I ⟶ℝ
3. f[x] (proper)continuous for x ∈ I
4. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))} 
5. i-approx(I;n) ⊆ I 
6. mc : f[x] continuous for x ∈ i-approx(I;n)
7. inf(f[x](x∈i-approx(I;n))) = inf{f[x]|x ∈ i-approx(I;n)}
8. sup(f[x](x∈i-approx(I;n))) = sup{f[x]|x ∈ i-approx(I;n)}
9. m : ℕ+
10. r(-m) ≤ inf{f[x]|x ∈ i-approx(I;n)}
11. sup{f[x]|x ∈ i-approx(I;n)} ≤ r(m)
⊢ m ∈ {m:ℕ+| icompact([r(-m), r(m)]) ∧ iproper([r(-m), r(m)])} 
2
1. I : Interval
2. f : I ⟶ℝ
3. f[x] (proper)continuous for x ∈ I
4. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))} 
5. i-approx(I;n) ⊆ I 
6. mc : f[x] continuous for x ∈ i-approx(I;n)
7. inf(f[x](x∈i-approx(I;n))) = inf{f[x]|x ∈ i-approx(I;n)}
8. sup(f[x](x∈i-approx(I;n))) = sup{f[x]|x ∈ i-approx(I;n)}
9. m : ℕ+
10. r(-m) ≤ inf{f[x]|x ∈ i-approx(I;n)}
11. sup{f[x]|x ∈ i-approx(I;n)} ≤ r(m)
12. x : {x:ℝ| x ∈ i-approx(I;n)} 
⊢ (r(-m) ≤ f[x]) ∧ (f[x] ≤ r(m))
Latex:
Latex:
1.  I  :  Interval
2.  f  :  I  {}\mrightarrow{}\mBbbR{}
3.  f[x]  (proper)continuous  for  x  \mmember{}  I
4.  n  :  \{n:\mBbbN{}\msupplus{}|  icompact(i-approx(I;n))  \mwedge{}  iproper(i-approx(I;n))\} 
5.  i-approx(I;n)  \msubseteq{}  I 
6.  mc  :  f[x]  continuous  for  x  \mmember{}  i-approx(I;n)
7.  inf(f[x](x\mmember{}i-approx(I;n)))  =  inf\{f[x]|x  \mmember{}  i-approx(I;n)\}
8.  sup(f[x](x\mmember{}i-approx(I;n)))  =  sup\{f[x]|x  \mmember{}  i-approx(I;n)\}
9.  \mexists{}m:\mBbbN{}\msupplus{}.  ((r(-m)  \mleq{}  inf\{f[x]|x  \mmember{}  i-approx(I;n)\})  \mwedge{}  (sup\{f[x]|x  \mmember{}  i-approx(I;n)\}  \mleq{}  r(m)))
\mvdash{}  \mexists{}m:\{m:\mBbbN{}\msupplus{}|  icompact(i-approx((-\minfty{},  \minfty{});m))  \mwedge{}  iproper(i-approx((-\minfty{},  \minfty{});m))\} 
      \mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  i-approx(I;n)\}  .  (f[x]  \mmember{}  i-approx((-\minfty{},  \minfty{});m))
By
Latex:
(D  (-1)  THEN  With  \mkleeneopen{}m\mkleeneclose{}  (D  0)\mcdot{}  THEN  Auto  THEN  RepUR  ``i-approx``  0)
Home
Index