Step
*
2
1
1
1
of Lemma
rabs-nonzero-on-compact
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. k : ℕ+
6. f x continuous for x ∈ [a, b]
7. ∀x:ℝ. ((x ∈ [a, b])
⇒ ((r1/r(k)) ≤ |f x|))
8. (f a) ≤ -((r1/r(k)))
9. x : ℝ
10. x ∈ [a, b]
11. (r1/r(k)) ≤ (f x)
12. -((r1/r(k))) < r0
13. r0 < (r1/r(k))
14. (r(-1)/r(k)) < (r1/r(k))
15. x1 : {x@0:ℝ| x@0 ∈ [rmin(a;x), rmax(a;x)]}
16. |f(x1) - r0| < (r1/r(2 * k))
⊢ (f x) ≤ (r(-1)/r(k))
BY
{ (Assert x1 ∈ [a, b] BY
(D (-2)
THEN Unhide
THEN Auto
THEN (Assert (a ≤ rmin(a;x)) ∧ (rmax(a;x) ≤ b) BY
EAuto 1)
THEN (RepUR ``i-member`` (-3) THEN RepUR ``i-member`` 0 THEN Auto)⋅))⋅ }
1
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. k : ℕ+
6. f x continuous for x ∈ [a, b]
7. ∀x:ℝ. ((x ∈ [a, b])
⇒ ((r1/r(k)) ≤ |f x|))
8. (f a) ≤ -((r1/r(k)))
9. x : ℝ
10. x ∈ [a, b]
11. (r1/r(k)) ≤ (f x)
12. -((r1/r(k))) < r0
13. r0 < (r1/r(k))
14. (r(-1)/r(k)) < (r1/r(k))
15. x1 : {x@0:ℝ| x@0 ∈ [rmin(a;x), rmax(a;x)]}
16. |f(x1) - r0| < (r1/r(2 * k))
17. x1 ∈ [a, b]
⊢ (f x) ≤ (r(-1)/r(k))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. a \mleq{} b
4. f : [a, b] {}\mrightarrow{}\mBbbR{}
5. k : \mBbbN{}\msupplus{}
6. f x continuous for x \mmember{} [a, b]
7. \mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} ((r1/r(k)) \mleq{} |f x|))
8. (f a) \mleq{} -((r1/r(k)))
9. x : \mBbbR{}
10. x \mmember{} [a, b]
11. (r1/r(k)) \mleq{} (f x)
12. -((r1/r(k))) < r0
13. r0 < (r1/r(k))
14. (r(-1)/r(k)) < (r1/r(k))
15. x1 : \{x@0:\mBbbR{}| x@0 \mmember{} [rmin(a;x), rmax(a;x)]\}
16. |f(x1) - r0| < (r1/r(2 * k))
\mvdash{} (f x) \mleq{} (r(-1)/r(k))
By
Latex:
(Assert x1 \mmember{} [a, b] BY
(D (-2)
THEN Unhide
THEN Auto
THEN (Assert (a \mleq{} rmin(a;x)) \mwedge{} (rmax(a;x) \mleq{} b) BY
EAuto 1)
THEN (RepUR ``i-member`` (-3) THEN RepUR ``i-member`` 0 THEN Auto)\mcdot{}))\mcdot{}
Home
Index