Step
*
1
2
1
1
of Lemma
rational-approx-implies-req
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. k-regular-seq(a)
7. k-regular-seq(a)
8. B : ℕ
9. ∀n:ℕ+. (|(accelerate(k;a) n) - a n| ≤ B)
⊢ ∃B:ℕ+. ∀m:ℕ+. (|accelerate(k;a) - x| ≤ (r(B)/r(m)))
BY
{ (Assert ∀n:ℕ+. (|(r(accelerate(k;a) n)/r(2 * n)) - (r(a n)/r(2 * n))| ≤ (r(B)/r(2 * n))) BY
ParallelLast) }
1
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. k-regular-seq(a)
7. k-regular-seq(a)
8. B : ℕ
9. ∀n:ℕ+. (|(accelerate(k;a) n) - a n| ≤ B)
10. n : ℕ+
11. |(accelerate(k;a) n) - a n| ≤ B
⊢ |(r(accelerate(k;a) n)/r(2 * n)) - (r(a n)/r(2 * n))| ≤ (r(B)/r(2 * n))
2
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. k-regular-seq(a)
7. k-regular-seq(a)
8. B : ℕ
9. ∀n:ℕ+. (|(accelerate(k;a) n) - a n| ≤ B)
10. ∀n:ℕ+. (|(r(accelerate(k;a) n)/r(2 * n)) - (r(a n)/r(2 * n))| ≤ (r(B)/r(2 * n)))
⊢ ∃B:ℕ+. ∀m:ℕ+. (|accelerate(k;a) - x| ≤ (r(B)/r(m)))
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}n:\mBbbN{}\msupplus{}. (|x - (r(a n)/r(2 * n))| \mleq{} (r(k)/r(n)))
5. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| \mleq{} ((r(k)/r(n)) + (r(k)/r(m))))
6. k-regular-seq(a)
7. k-regular-seq(a)
8. B : \mBbbN{}
9. \mforall{}n:\mBbbN{}\msupplus{}. (|(accelerate(k;a) n) - a n| \mleq{} B)
\mvdash{} \mexists{}B:\mBbbN{}\msupplus{}. \mforall{}m:\mBbbN{}\msupplus{}. (|accelerate(k;a) - x| \mleq{} (r(B)/r(m)))
By
Latex:
(Assert \mforall{}n:\mBbbN{}\msupplus{}. (|(r(accelerate(k;a) n)/r(2 * n)) - (r(a n)/r(2 * n))| \mleq{} (r(B)/r(2 * n))) BY
ParallelLast)
Home
Index