Nuprl Lemma : rational-approx-property-ext

x:ℝ. ∀n:ℕ+.  (|x (x within 1/n)| ≤ (r1/r(n)))


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  rleq_functionality rational-approx-property member: t ∈ T
Lemmas referenced :  rational-approx-property rleq_functionality
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (|x  -  (x  within  1/n)|  \mleq{}  (r1/r(n)))



Date html generated: 2018_05_22-PM-01_33_21
Last ObjectModification: 2018_05_21-AM-00_08_13

Theory : reals


Home Index