Nuprl Lemma : rational-approx-property-ext
∀x:ℝ. ∀n:ℕ+.  (|x - (x within 1/n)| ≤ (r1/r(n)))
Proof
Definitions occuring in Statement : 
rational-approx: (x within 1/n)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
rleq_functionality, 
rational-approx-property, 
member: t ∈ T
Lemmas referenced : 
rational-approx-property, 
rleq_functionality
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (|x  -  (x  within  1/n)|  \mleq{}  (r1/r(n)))
Date html generated:
2018_05_22-PM-01_33_21
Last ObjectModification:
2018_05_21-AM-00_08_13
Theory : reals
Home
Index