Step
*
2
2
1
2
1
of Lemma
rational-inner-approx-property
1. x : ℝ
2. n : ℕ+
3. a : ℤ
4. (x (2 * n)) = a ∈ ℤ
5. |x - (r(a))/2 * 2 * n| ≤ (r1/r(2 * n))
6. |a| ≤ 4
7. (r0)/2 * 2 * n = r0
8. |r0| ≤ |x|
9. |(r(a))/2 * 2 * n - r0| ≤ (r(2)/r(2 * n))
⊢ ((r1/r(2 * n)) + (r(2)/r(2 * n))) ≤ (r(2)/r(n))
BY
{ (RWW "radd-rdiv radd-int" 0 THEN Auto) }
Latex:
Latex:
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. a : \mBbbZ{}
4. (x (2 * n)) = a
5. |x - (r(a))/2 * 2 * n| \mleq{} (r1/r(2 * n))
6. |a| \mleq{} 4
7. (r0)/2 * 2 * n = r0
8. |r0| \mleq{} |x|
9. |(r(a))/2 * 2 * n - r0| \mleq{} (r(2)/r(2 * n))
\mvdash{} ((r1/r(2 * n)) + (r(2)/r(2 * n))) \mleq{} (r(2)/r(n))
By
Latex:
(RWW "radd-rdiv radd-int" 0 THEN Auto)
Home
Index