Nuprl Lemma : real-det-sq-matrix-det

n:ℕ. ∀M:Top.  (|M| |M|)


Proof




Definitions occuring in Statement :  real-det: |M| real-ring: real-ring() nat: top: Top all: x:A. B[x] sqequal: t matrix-det: |M|
Definitions unfolded in proof :  all: x:A. B[x] real-det: |M| matrix-det: |M| real-ring: real-ring() rng_minus: -r pi2: snd(t) pi1: fst(t) matrix-ap: M[i,j] rng_prod: rng_prod rng_lsum: Σ{r} x ∈ as. f[x] rng_plus: +r rng_zero: 0 mon_itop: Π lb ≤ i < ub. E[i] mul_mon_of_rng: r↓xmn grp_op: * grp_id: e rng_times: * rng_one: 1 r-list-sum: r-list-sum(L) uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  rprod-as-itop istype-void istype-top istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis isect_memberEquality_alt voidElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}M:Top.    (|M|  \msim{}  |M|)



Date html generated: 2019_10_30-AM-08_21_27
Last ObjectModification: 2019_09_18-PM-05_55_32

Theory : reals


Home Index