Nuprl Lemma : real-rng_lsum-sq

[L,A:Top].  {real-ring()} x ∈ L. A[x] reduce(λx,y. (x y);r0;map(λx.A[x];L)))


Proof




Definitions occuring in Statement :  real-ring: real-ring() radd: b int-to-real: r(n) map: map(f;as) reduce: reduce(f;k;as) uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] natural_number: $n sqequal: t rng_lsum: Σ{r} x ∈ as. f[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rng_lsum: Σ{r} x ∈ as. f[x] real-ring: real-ring() rng_plus: +r pi2: snd(t) pi1: fst(t) rng_zero: 0
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule hypothesis axiomSqEquality inhabitedIsType hypothesisEquality sqequalHypSubstitution isect_memberEquality_alt isectElimination thin isectIsTypeImplies extract_by_obid

Latex:
\mforall{}[L,A:Top].    (\mSigma{}\{real-ring()\}  x  \mmember{}  L.  A[x]  \msim{}  reduce(\mlambda{}x,y.  (x  +  y);r0;map(\mlambda{}x.A[x];L)))



Date html generated: 2019_10_30-AM-08_10_13
Last ObjectModification: 2019_09_18-PM-04_26_41

Theory : reals


Home Index