Nuprl Lemma : real-rng_lsum-sq
∀[L,A:Top].  (Σ{real-ring()} x ∈ L. A[x] ~ reduce(λx,y. (x + y);r0;map(λx.A[x];L)))
Proof
Definitions occuring in Statement : 
real-ring: real-ring()
, 
radd: a + b
, 
int-to-real: r(n)
, 
map: map(f;as)
, 
reduce: reduce(f;k;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
sqequal: s ~ t
, 
rng_lsum: Σ{r} x ∈ as. f[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
real-ring: real-ring()
, 
rng_plus: +r
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
rng_zero: 0
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
isectIsTypeImplies, 
extract_by_obid
Latex:
\mforall{}[L,A:Top].    (\mSigma{}\{real-ring()\}  x  \mmember{}  L.  A[x]  \msim{}  reduce(\mlambda{}x,y.  (x  +  y);r0;map(\mlambda{}x.A[x];L)))
Date html generated:
2019_10_30-AM-08_10_13
Last ObjectModification:
2019_09_18-PM-04_26_41
Theory : reals
Home
Index