Step
*
1
1
of Lemma
real-vec-perp-exists
1. n : {2...}
2. x : ℝ^n
3. x ≠ λi.r0
4. i : ℕn
5. r0 < |x i|
6. j : ℕn
7. ¬(j = i ∈ ℤ)
⊢ ∃y:ℝ^n. (y ≠ λi.r0 ∧ (x⋅y = r0))
BY
{ (D 0 With ⌜λk.if (k =z i) then -(x j) if (k =z j) then x i else r0 fi ⌝ THEN Auto) }
1
1. n : {2...}
2. x : ℝ^n
3. x ≠ λi.r0
4. i : ℕn
5. r0 < |x i|
6. j : ℕn
7. ¬(j = i ∈ ℤ)
⊢ λk.if (k =z i) then -(x j)
if (k =z j) then x i
else r0
fi ≠ λi.r0
2
1. n : {2...}
2. x : ℝ^n
3. x ≠ λi.r0
4. i : ℕn
5. r0 < |x i|
6. j : ℕn
7. ¬(j = i ∈ ℤ)
8. λk.if (k =z i) then -(x j)
if (k =z j) then x i
else r0
fi ≠ λi.r0
⊢ x⋅λk.if (k =z i) then -(x j) if (k =z j) then x i else r0 fi = r0
Latex:
Latex:
1. n : \{2...\}
2. x : \mBbbR{}\^{}n
3. x \mneq{} \mlambda{}i.r0
4. i : \mBbbN{}n
5. r0 < |x i|
6. j : \mBbbN{}n
7. \mneg{}(j = i)
\mvdash{} \mexists{}y:\mBbbR{}\^{}n. (y \mneq{} \mlambda{}i.r0 \mwedge{} (x\mcdot{}y = r0))
By
Latex:
(D 0 With \mkleeneopen{}\mlambda{}k.if (k =\msubz{} i) then -(x j) if (k =\msubz{} j) then x i else r0 fi \mkleeneclose{} THEN Auto)
Home
Index