Step
*
1
1
1
1
1
of Lemma
real-vec-sep-mul
1. n : ℕ
2. a : ℝ
3. b : ℝ
4. y : ℝ^n
5. y' : ℝ^n
6. i : ℕn
7. r0 < (|(a * (y i)) - a * (y' i)| + |(a * (y' i)) - b * (y' i)|)
8. |(a * (y i)) - b * (y' i)| ≤ (|(a * (y i)) - a * (y' i)| + |(a * (y' i)) - b * (y' i)|)
9. r0 < (|a| * |(y i) - y' i|)
10. ((a * (y i)) - a * (y' i)) = (a * ((y i) - y' i))
11. |a| < r0
12. |(y i) - y' i| < r0
⊢ r0 < |(y i) - y' i|
BY
{ ((Assert r0 ≤ |a| BY Auto) THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbR{}
3. b : \mBbbR{}
4. y : \mBbbR{}\^{}n
5. y' : \mBbbR{}\^{}n
6. i : \mBbbN{}n
7. r0 < (|(a * (y i)) - a * (y' i)| + |(a * (y' i)) - b * (y' i)|)
8. |(a * (y i)) - b * (y' i)| \mleq{} (|(a * (y i)) - a * (y' i)| + |(a * (y' i)) - b * (y' i)|)
9. r0 < (|a| * |(y i) - y' i|)
10. ((a * (y i)) - a * (y' i)) = (a * ((y i) - y' i))
11. |a| < r0
12. |(y i) - y' i| < r0
\mvdash{} r0 < |(y i) - y' i|
By
Latex:
((Assert r0 \mleq{} |a| BY Auto) THEN Auto)
Home
Index