Step * 2 1 1 of Lemma reg-seq-list-add_wf


1. : ℝ List
2. : ℕ+@i
3. : ℕ+@i
⊢ |(m l_sum(map(λx.(x n);L))) l_sum(map(λx.(x m);L))| ≤ ((2 ||L||) (n m))
BY
((RWO "l_sum-mul-left" THENA Auto)
   THEN (RWO "map-map" THENA Auto)
   THEN RepUR ``compose`` 0
   THEN RWO "l_sum-triangle-inequality" 0⋅
   THEN Auto) }

1
1. : ℝ List
2. : ℕ+@i
3. : ℕ+@i
⊢ l_sum(map(λx.|(m (x n)) (x m)|;L)) ≤ ((2 ||L||) (n m))


Latex:


Latex:

1.  L  :  \mBbbR{}  List
2.  n  :  \mBbbN{}\msupplus{}@i
3.  m  :  \mBbbN{}\msupplus{}@i
\mvdash{}  |(m  *  l\_sum(map(\mlambda{}x.(x  n);L)))  -  n  *  l\_sum(map(\mlambda{}x.(x  m);L))|  \mleq{}  ((2  *  ||L||)  *  (n  +  m))


By


Latex:
((RWO  "l\_sum-mul-left"  0  THENA  Auto)
  THEN  (RWO  "map-map"  0  THENA  Auto)
  THEN  RepUR  ``compose``  0
  THEN  RWO  "l\_sum-triangle-inequality"  0\mcdot{}
  THEN  Auto)




Home Index