Step
*
1
of Lemma
regular-iff-all-regular-upto
1. k : ℕ+
2. x : ℕ+ ⟶ ℤ
3. ∀b:ℕ+. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
4. n : ℕ+
5. m : ℕ+
⊢ |(m * (x n)) - n * (x m)| ≤ ((2 * k) * (n + m))
BY
{ (InstHyp [⌜imax(n;m)⌝;⌜m⌝;⌜n⌝] 3⋅ THEN Auto) }
1
1. k : ℕ+
2. x : ℕ+ ⟶ ℤ
3. ∀b:ℕ+. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
4. n : ℕ+
5. m : ℤ
6. 0 < m
⊢ m < imax(n;m) + 1
2
1. k : ℕ+
2. x : ℕ+ ⟶ ℤ
3. ∀b:ℕ+. ∀i,j:ℕ+b + 1. (|(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j)))
4. n : ℤ
5. 0 < n
6. m : ℕ+
⊢ n < imax(n;m) + 1
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
3. \mforall{}b:\mBbbN{}\msupplus{}. \mforall{}i,j:\mBbbN{}\msupplus{}b + 1. (|(i * (x j)) - j * (x i)| \mleq{} ((2 * k) * (i + j)))
4. n : \mBbbN{}\msupplus{}
5. m : \mBbbN{}\msupplus{}
\mvdash{} |(m * (x n)) - n * (x m)| \mleq{} ((2 * k) * (n + m))
By
Latex:
(InstHyp [\mkleeneopen{}imax(n;m)\mkleeneclose{};\mkleeneopen{}m\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}] 3\mcdot{} THEN Auto)
Home
Index