Step
*
1
of Lemma
regular-less-iff
1. [x] : ℝ
2. [y] : ℝ
3. ∃n:{ℕ+| (x n) + 4 < y n}
4. b : {4...}
⊢ ∃n:ℕ+. ∀m:{n...}. (x m) + b < y m
BY
{ (ExRepD THEN (Assert 5 ≤ (b + 4) BY Auto) THEN Mul ⌜n⌝ (-1)⋅ THEN Auto') }
1
1. [x] : ℝ
2. [y] : ℝ
3. n : ℕ+
4. (x n) + 4 < y n
5. b : {4...}
6. 5 ≤ (b + 4)
7. (n * 5) ≤ (n * (b + 4))
⊢ ∃n:ℕ+. ∀m:{n...}. (x m) + b < y m
Latex:
Latex:
1. [x] : \mBbbR{}
2. [y] : \mBbbR{}
3. \mexists{}n:\{\mBbbN{}\msupplus{}| (x n) + 4 < y n\}
4. b : \{4...\}
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. \mforall{}m:\{n...\}. (x m) + b < y m
By
Latex:
(ExRepD THEN (Assert 5 \mleq{} (b + 4) BY Auto) THEN Mul \mkleeneopen{}n\mkleeneclose{} (-1)\mcdot{} THEN Auto')
Home
Index