Nuprl Lemma : regular-less-iff

[x,y:ℝ].  (∃n:{ℕ+(x n) 4 < n} ⇐⇒ ∀b:{4...}. ∃n:ℕ+. ∀m:{n...}. (x m) b < m)


Proof




Definitions occuring in Statement :  real: int_upper: {i...} nat_plus: + less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] iff: ⇐⇒ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] real: so_apply: x[s] rev_implies:  Q nat_plus: + int_upper: {i...} le: A ≤ B guard: {T} uimplies: supposing a sq_exists: x:{A| B[x]} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b less_than': less_than'(a;b) true: True squash: T bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nat: ge: i ≥ 
Lemmas referenced :  int_upper_wf sq_exists_wf nat_plus_wf less_than_wf all_wf exists_wf less_than_transitivity1 real_wf sq_stable__less_than int_upper_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf mul_preserves_le nat_plus_subtype_nat decidable__lt intformless_wf itermMultiply_wf int_formula_prop_less_lemma int_term_value_mul_lemma multiply-is-int-iff int_subtype_base regular-consistency subtype_rel_sets le_wf absval_unfold subtract_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf add-is-int-iff itermSubtract_wf int_term_value_subtract_lemma false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma absval_wf nat_wf int_upper_subtype_nat le_functionality multiply_functionality_wrt_le le_weakening add_functionality_wrt_le regular-less absval_ifthenelse subtract-is-int-iff assert_wf bnot_wf not_wf minus-is-int-iff bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis sqequalRule lambdaEquality addEquality applyEquality setElimination rename hypothesisEquality because_Cache dependent_set_memberEquality productElimination independent_isectElimination promote_hyp dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll multiplyEquality baseApply closedConclusion baseClosed setEquality applyLambdaEquality minusEquality equalityElimination equalityTransitivity equalitySymmetry lessCases sqequalAxiom imageMemberEquality imageElimination independent_functionElimination pointwiseFunctionality instantiate cumulativity impliesFunctionality dependent_set_memberFormation

Latex:
\mforall{}[x,y:\mBbbR{}].    (\mexists{}n:\{\mBbbN{}\msupplus{}|  (x  n)  +  4  <  y  n\}  \mLeftarrow{}{}\mRightarrow{}  \mforall{}b:\{4...\}.  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.  (x  m)  +  b  <  y  m)



Date html generated: 2017_10_02-PM-07_13_52
Last ObjectModification: 2017_07_28-AM-07_20_05

Theory : reals


Home Index