Step
*
2
1
1
of Lemma
regular-upto-iff
1. k : ℕ+
2. b : ℕ+
3. x : ℕ+ ⟶ ℤ
4. i : ℕ+b + 1
5. j : ℕ+b + 1
6. z : ℝ
7. (r((x seq-min-upper(k;b;x)) + (2 * k))/r((2 * k) * seq-min-upper(k;b;x))) = z ∈ ℝ
8. (r((x i) - 2 * k)/r((2 * k) * i)) ≤ z
9. z ≤ (r((x i) + (2 * k))/r((2 * k) * i))
10. (r((x j) - 2 * k)/r((2 * k) * j)) ≤ z
11. z ≤ (r((x j) + (2 * k))/r((2 * k) * j))
⊢ |(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j))
BY
{ ((Assert ((r((x i) - 2 * k)/r((2 * k) * i)) ≤ (r((x j) + (2 * k))/r((2 * k) * j)))
∧ ((r((x j) - 2 * k)/r((2 * k) * j)) ≤ (r((x i) + (2 * k))/r((2 * k) * i))) BY
Auto)
THEN ThinVar `z'
THEN (RWO "rleq-int-fractions" (-1) THENA Auto)) }
1
1. k : ℕ+
2. b : ℕ+
3. x : ℕ+ ⟶ ℤ
4. i : ℕ+b + 1
5. j : ℕ+b + 1
6. ((((x i) - 2 * k) * (2 * k) * j) ≤ (((x j) + (2 * k)) * (2 * k) * i))
∧ ((((x j) - 2 * k) * (2 * k) * i) ≤ (((x i) + (2 * k)) * (2 * k) * j))
⊢ |(i * (x j)) - j * (x i)| ≤ ((2 * k) * (i + j))
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. b : \mBbbN{}\msupplus{}
3. x : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. i : \mBbbN{}\msupplus{}b + 1
5. j : \mBbbN{}\msupplus{}b + 1
6. z : \mBbbR{}
7. (r((x seq-min-upper(k;b;x)) + (2 * k))/r((2 * k) * seq-min-upper(k;b;x))) = z
8. (r((x i) - 2 * k)/r((2 * k) * i)) \mleq{} z
9. z \mleq{} (r((x i) + (2 * k))/r((2 * k) * i))
10. (r((x j) - 2 * k)/r((2 * k) * j)) \mleq{} z
11. z \mleq{} (r((x j) + (2 * k))/r((2 * k) * j))
\mvdash{} |(i * (x j)) - j * (x i)| \mleq{} ((2 * k) * (i + j))
By
Latex:
((Assert ((r((x i) - 2 * k)/r((2 * k) * i)) \mleq{} (r((x j) + (2 * k))/r((2 * k) * j)))
\mwedge{} ((r((x j) - 2 * k)/r((2 * k) * j)) \mleq{} (r((x i) + (2 * k))/r((2 * k) * i))) BY
Auto)
THEN ThinVar `z'
THEN (RWO "rleq-int-fractions" (-1) THENA Auto))
Home
Index