Nuprl Lemma : regular-upto-iff
∀k,b:ℕ+. ∀x:ℕ+ ⟶ ℤ.
(↑regular-upto(k;b;x)
⇐⇒ ∀n,m:ℕ+b + 1.
let j = seq-min-upper(k;b;x) in
let z = (r((x j) + (2 * k))/r((2 * k) * j)) in
(((r((x n) - 2 * k)/r((2 * k) * n)) ≤ z) ∧ (z ≤ (r((x n) + (2 * k))/r((2 * k) * n))))
∧ ((r((x m) - 2 * k)/r((2 * k) * m)) ≤ z)
∧ (z ≤ (r((x m) + (2 * k))/r((2 * k) * m))))
Proof
Definitions occuring in Statement :
seq-min-upper: seq-min-upper(k;n;f)
,
regular-upto: regular-upto(k;n;f)
,
rdiv: (x/y)
,
rleq: x ≤ y
,
int-to-real: r(n)
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
assert: ↑b
,
let: let,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
multiply: n * m
,
subtract: n - m
,
add: n + m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat_plus: ℕ+
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
false: False
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
lelt: i ≤ j < k
,
top: Top
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
rneq: x ≠ y
,
guard: {T}
,
less_than: a < b
,
squash: ↓T
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
so_apply: x[s]
,
nat: ℕ
,
let: let,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
Lemmas referenced :
int_seg_wf,
assert_wf,
regular-upto_wf,
nat_plus_subtype_nat,
nat_plus_wf,
all_wf,
let_wf,
real_wf,
rleq_wf,
rdiv_wf,
int-to-real_wf,
subtract_wf,
decidable__lt,
false_wf,
not-lt-2,
add_functionality_wrt_le,
add-commutes,
zero-add,
le-add-cancel,
less_than_wf,
rless-int,
multiply_nat_plus,
nat_plus_properties,
int_seg_properties,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
itermMultiply_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_term_value_mul_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
equal_wf,
rless_wf,
seq-min-upper_wf,
assert-regular-upto,
seq-min-upper-property,
seq-min-upper-le,
decidable__le,
intformle_wf,
int_formula_prop_le_lemma,
le_wf,
itermAdd_wf,
int_term_value_add_lemma,
lelt_wf,
rleq-int-fractions,
mul_nat_plus,
mul_preserves_le,
multiply-is-int-iff,
int_subtype_base,
subtract-is-int-iff,
itermSubtract_wf,
int_term_value_subtract_lemma,
absval_ubound,
mul_bounds_1a,
minus-is-int-iff,
itermMinus_wf,
int_term_value_minus_lemma,
rleq_transitivity,
absval_unfold,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
mul_cancel_in_le,
add-is-int-iff,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
addEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
because_Cache,
functionExtensionality,
lambdaEquality,
instantiate,
cumulativity,
universeEquality,
productEquality,
dependent_set_memberEquality,
dependent_functionElimination,
unionElimination,
voidElimination,
productElimination,
independent_functionElimination,
independent_isectElimination,
isect_memberEquality,
voidEquality,
intEquality,
multiplyEquality,
inrFormation,
imageMemberEquality,
baseClosed,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
functionEquality,
addLevel,
baseApply,
closedConclusion,
pointwiseFunctionality,
promote_hyp,
allFunctionality,
equalityElimination,
minusEquality,
lessCases,
isect_memberFormation,
sqequalAxiom,
imageElimination
Latex:
\mforall{}k,b:\mBbbN{}\msupplus{}. \mforall{}x:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}.
(\muparrow{}regular-upto(k;b;x)
\mLeftarrow{}{}\mRightarrow{} \mforall{}n,m:\mBbbN{}\msupplus{}b + 1.
let j = seq-min-upper(k;b;x) in
let z = (r((x j) + (2 * k))/r((2 * k) * j)) in
(((r((x n) - 2 * k)/r((2 * k) * n)) \mleq{} z) \mwedge{} (z \mleq{} (r((x n) + (2 * k))/r((2 * k) * n))))
\mwedge{} ((r((x m) - 2 * k)/r((2 * k) * m)) \mleq{} z)
\mwedge{} (z \mleq{} (r((x m) + (2 * k))/r((2 * k) * m))))
Date html generated:
2017_10_03-AM-08_44_27
Last ObjectModification:
2017_09_11-PM-01_08_40
Theory : reals
Home
Index