Step
*
1
of Lemma
rneq-rmul
1. x : ℝ
2. y : ℝ
3. a : ℝ
4. b : ℝ
5. r0 < |(x * y) - a * b|
⊢ (r0 < |x - a|) ∨ (r0 < |y - b|)
BY
{ ((Assert |(x * y) - a * b| ≤ (|(x * y) - a * y| + |(a * y) - a * b|) BY
(UseTriangleInequality [⌜a * y⌝]⋅ THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1)) }
1
1. x : ℝ
2. y : ℝ
3. a : ℝ
4. b : ℝ
5. r0 < (|(x * y) - a * y| + |(a * y) - a * b|)
⊢ (r0 < |x - a|) ∨ (r0 < |y - b|)
Latex:
Latex:
1. x : \mBbbR{}
2. y : \mBbbR{}
3. a : \mBbbR{}
4. b : \mBbbR{}
5. r0 < |(x * y) - a * b|
\mvdash{} (r0 < |x - a|) \mvee{} (r0 < |y - b|)
By
Latex:
((Assert |(x * y) - a * b| \mleq{} (|(x * y) - a * y| + |(a * y) - a * b|) BY
(UseTriangleInequality [\mkleeneopen{}a * y\mkleeneclose{}]\mcdot{} THEN Auto))
THEN (RWO "-1" (-2) THENA Auto)
THEN Thin (-1))
Home
Index