Nuprl Lemma : rneq-rmul

x,y,a,b:ℝ.  (x y ≠  (x ≠ a ∨ y ≠ b))


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] or: P ∨ Q so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a rge: x ≥ y guard: {T} uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  rless_wf int-to-real_wf rabs_wf rsub_wf rmul_wf real_wf rneq-iff-rabs rneq_wf all_wf or_wf rleq_functionality_wrt_implies radd_wf rleq_weakening_equal r-triangle-inequality2 rless_functionality_wrt_implies radd-positive-implies itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rless_functionality req_weakening rabs_functionality rabs-rmul rmul-is-positive zero-rleq-rabs rless_transitivity1 rless_irreflexivity
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality addLevel allFunctionality impliesFunctionality dependent_functionElimination productElimination independent_functionElimination orFunctionality sqequalRule lambdaEquality because_Cache functionEquality independent_isectElimination equalityTransitivity equalitySymmetry unionElimination inlFormation inrFormation approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality promote_hyp

Latex:
\mforall{}x,y,a,b:\mBbbR{}.    (x  *  y  \mneq{}  a  *  b  {}\mRightarrow{}  (x  \mneq{}  a  \mvee{}  y  \mneq{}  b))



Date html generated: 2017_10_03-AM-08_47_26
Last ObjectModification: 2017_06_21-PM-03_25_55

Theory : reals


Home Index