Step
*
1
1
of Lemma
rnexp-convex
1. a : ℝ
2. b : ℝ
3. r0 ≤ b
4. b ≤ a
5. n : ℤ
6. 0 < n
7. a - b^n ≤ (a^n - b^n)
⊢ ((a^n * a) + -(a^n * b) + -(b^n * a) + (b^n * b)) ≤ ((a^n * a) + -(b^n * b))
BY
{ nRAdd ⌜(b^n * a) + (a^n * b) + (b^n * b)⌝ 0⋅ }
1
1. a : ℝ
2. b : ℝ
3. r0 ≤ b
4. b ≤ a
5. n : ℤ
6. 0 < n
7. a - b^n ≤ (a^n - b^n)
⊢ ((a^n * a) + (r(2) * b^n * b)) ≤ ((a^n * a) + (a^n * b) + (b^n * a))
Latex:
Latex:
1. a : \mBbbR{}
2. b : \mBbbR{}
3. r0 \mleq{} b
4. b \mleq{} a
5. n : \mBbbZ{}
6. 0 < n
7. a - b\^{}n \mleq{} (a\^{}n - b\^{}n)
\mvdash{} ((a\^{}n * a) + -(a\^{}n * b) + -(b\^{}n * a) + (b\^{}n * b)) \mleq{} ((a\^{}n * a) + -(b\^{}n * b))
By
Latex:
nRAdd \mkleeneopen{}(b\^{}n * a) + (a\^{}n * b) + (b\^{}n * b)\mkleeneclose{} 0\mcdot{}
Home
Index