Nuprl Lemma : rnexp-convex

a,b:ℝ.  ((r0 ≤ b)  (b ≤ a)  (∀n:ℕ+(a b^n ≤ (a^n b^n))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat_plus: + prop: nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) cand: c∧ B itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} rleq: x ≤ y rnonneg: rnonneg(x)
Lemmas referenced :  nat_plus_properties rleq_wf rnexp_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rsub_wf primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf int-to-real_wf real_wf false_wf rleq_weakening_equal itermAdd_wf int_term_value_add_lemma rmul_wf rnexp-nonneg rleq-implies-rleq real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 rleq_functionality rpower-one rsub_functionality req_transitivity req_inversion rnexp-add rmul_functionality req_weakening rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 radd_wf rminus_wf itermMultiply_wf itermMinus_wf real_term_value_mul_lemma real_term_value_add_lemma real_term_value_minus_lemma radd_functionality rminus_functionality radd-preserves-rleq uiff_transitivity rnexp-rleq rmul_preserves_rleq2 less_than'_wf radd_functionality_wrt_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination dependent_set_memberEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality addEquality inlFormation independent_functionElimination productElimination productEquality equalityTransitivity equalitySymmetry isect_memberFormation independent_pairEquality minusEquality axiomEquality

Latex:
\mforall{}a,b:\mBbbR{}.    ((r0  \mleq{}  b)  {}\mRightarrow{}  (b  \mleq{}  a)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (a  -  b\^{}n  \mleq{}  (a\^{}n  -  b\^{}n))))



Date html generated: 2017_10_03-AM-10_36_21
Last ObjectModification: 2017_07_28-AM-08_13_55

Theory : reals


Home Index