Nuprl Lemma : rnexp-convex
∀a,b:ℝ.  ((r0 ≤ b) 
⇒ (b ≤ a) 
⇒ (∀n:ℕ+. (a - b^n ≤ (a^n - b^n))))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rsub: x - y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
Lemmas referenced : 
nat_plus_properties, 
rleq_wf, 
rnexp_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
rsub_wf, 
primrec-wf-nat-plus, 
nat_plus_subtype_nat, 
nat_plus_wf, 
int-to-real_wf, 
real_wf, 
false_wf, 
rleq_weakening_equal, 
itermAdd_wf, 
int_term_value_add_lemma, 
rmul_wf, 
rnexp-nonneg, 
rleq-implies-rleq, 
real_term_polynomial, 
itermSubtract_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rleq_functionality, 
rpower-one, 
rsub_functionality, 
req_transitivity, 
req_inversion, 
rnexp-add, 
rmul_functionality, 
req_weakening, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
radd_wf, 
rminus_wf, 
itermMultiply_wf, 
itermMinus_wf, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
radd_functionality, 
rminus_functionality, 
radd-preserves-rleq, 
uiff_transitivity, 
rnexp-rleq, 
rmul_preserves_rleq2, 
less_than'_wf, 
radd_functionality_wrt_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
dependent_set_memberEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
applyEquality, 
addEquality, 
inlFormation, 
independent_functionElimination, 
productElimination, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
independent_pairEquality, 
minusEquality, 
axiomEquality
Latex:
\mforall{}a,b:\mBbbR{}.    ((r0  \mleq{}  b)  {}\mRightarrow{}  (b  \mleq{}  a)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  (a  -  b\^{}n  \mleq{}  (a\^{}n  -  b\^{}n))))
Date html generated:
2017_10_03-AM-10_36_21
Last ObjectModification:
2017_07_28-AM-08_13_55
Theory : reals
Home
Index