Step
*
1
1
of Lemma
separated-partitions-have-common-refinement
1. I : Interval
2. icompact(I)
3. P : partition(I)
4. Q : partition(I)
5. separated-partitions(P;Q)
6. r : ℝ List
7. frs-increasing(r)
8. frs-refines(r;P)
9. frs-refines(r;Q)
10. frs-refines(P @ Q;r)
11. 0 < ||r||
⊢ left-endpoint(I) ≤ r[0]
BY
{ ((With ⌜0⌝ (D (-2))⋅ THENA Auto) THEN (RWO "l_exists_iff" (-1) THENA Auto) THEN ExRepD THEN RWO "-1" 0 THEN Auto) }
1
1. I : Interval
2. icompact(I)
3. P : partition(I)
4. Q : partition(I)
5. separated-partitions(P;Q)
6. r : ℝ List
7. frs-increasing(r)
8. frs-refines(r;P)
9. frs-refines(r;Q)
10. 0 < ||r||
11. y : ℝ
12. (y ∈ P @ Q)
13. r[0] = y
⊢ left-endpoint(I) ≤ y
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. P : partition(I)
4. Q : partition(I)
5. separated-partitions(P;Q)
6. r : \mBbbR{} List
7. frs-increasing(r)
8. frs-refines(r;P)
9. frs-refines(r;Q)
10. frs-refines(P @ Q;r)
11. 0 < ||r||
\mvdash{} left-endpoint(I) \mleq{} r[0]
By
Latex:
((With \mkleeneopen{}0\mkleeneclose{} (D (-2))\mcdot{} THENA Auto)
THEN (RWO "l\_exists\_iff" (-1) THENA Auto)
THEN ExRepD
THEN RWO "-1" 0
THEN Auto)
Home
Index