Step
*
1
2
1
1
of Lemma
separated-partitions-have-common-refinement
1. I : Interval
2. icompact(I)
3. P : partition(I)
4. Q : partition(I)
5. separated-partitions(P;Q)
6. r : ℝ List
7. frs-increasing(r)
8. frs-refines(r;P)
9. frs-refines(r;Q)
10. 0 < ||r||
11. y : ℝ
12. (y ∈ P @ Q)
13. last(r) = y
14. ∀x:ℝ. ((x ∈ P)
⇒ (x ∈ I))
15. ∀x:ℝ. ((x ∈ Q)
⇒ (x ∈ I))
⊢ y ≤ right-endpoint(I)
BY
{ ((Assert y ∈ I BY
((RWO "member_append" (-4) THENA Auto) THEN D -4 THEN Auto))⋅
THEN (FLemma `i-member-compact` [-1] THEN Auto)⋅
) }
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. P : partition(I)
4. Q : partition(I)
5. separated-partitions(P;Q)
6. r : \mBbbR{} List
7. frs-increasing(r)
8. frs-refines(r;P)
9. frs-refines(r;Q)
10. 0 < ||r||
11. y : \mBbbR{}
12. (y \mmember{} P @ Q)
13. last(r) = y
14. \mforall{}x:\mBbbR{}. ((x \mmember{} P) {}\mRightarrow{} (x \mmember{} I))
15. \mforall{}x:\mBbbR{}. ((x \mmember{} Q) {}\mRightarrow{} (x \mmember{} I))
\mvdash{} y \mleq{} right-endpoint(I)
By
Latex:
((Assert y \mmember{} I BY
((RWO "member\_append" (-4) THENA Auto) THEN D -4 THEN Auto))\mcdot{}
THEN (FLemma `i-member-compact` [-1] THEN Auto)\mcdot{}
)
Home
Index