Nuprl Lemma : converges-to-rexp-ext
∀x:ℝ. lim n→∞.approx-rexp(x;n) = e^x
Proof
Definitions occuring in Statement : 
approx-rexp: approx-rexp(x;n)
, 
rexp: e^x
, 
converges-to: lim n→∞.x[n] = y
, 
real: ℝ
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
converges-to-rexp
Lemmas referenced : 
converges-to-rexp
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.approx-rexp(x;n)  =  e\^{}x
Date html generated:
2019_10_31-AM-06_11_20
Last ObjectModification:
2019_04_03-AM-01_15_26
Theory : reals_2
Home
Index