Nuprl Lemma : converges-to-rexp-ext

x:ℝlim n→∞.approx-rexp(x;n) e^x


Proof




Definitions occuring in Statement :  approx-rexp: approx-rexp(x;n) rexp: e^x converges-to: lim n→∞.x[n] y real: all: x:A. B[x]
Definitions unfolded in proof :  member: t ∈ T converges-to-rexp
Lemmas referenced :  converges-to-rexp
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  lim  n\mrightarrow{}\minfty{}.approx-rexp(x;n)  =  e\^{}x



Date html generated: 2019_10_31-AM-06_11_20
Last ObjectModification: 2019_04_03-AM-01_15_26

Theory : reals_2


Home Index