Nuprl Lemma : cat_ob_op_lemma

C:SmallCategory. (cat-ob(op-cat(C)) cat-ob(C))


Proof




Definitions occuring in Statement :  op-cat: op-cat(C) cat-ob: cat-ob(C) small-category: SmallCategory all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] pi1: fst(t) spreadn: spread4 op-cat: op-cat(C) cat-ob: cat-ob(C) small-category: SmallCategory
Lemmas referenced :  small-category_wf
Rules used in proof :  lemma_by_obid hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule productElimination rename thin setElimination sqequalHypSubstitution

Latex:
\mforall{}C:SmallCategory.  (cat-ob(op-cat(C))  \msim{}  cat-ob(C))



Date html generated: 2016_05_18-AM-11_53_18
Last ObjectModification: 2015_12_28-PM-02_23_46

Theory : small!categories


Home Index