Nuprl Lemma : cat_ob_op_lemma
∀C:SmallCategory. (cat-ob(op-cat(C)) ~ cat-ob(C))
Proof
Definitions occuring in Statement : 
op-cat: op-cat(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
spreadn: spread4, 
op-cat: op-cat(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Lemmas referenced : 
small-category_wf
Rules used in proof : 
lemma_by_obid, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalRule, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution
Latex:
\mforall{}C:SmallCategory.  (cat-ob(op-cat(C))  \msim{}  cat-ob(C))
Date html generated:
2016_05_18-AM-11_53_18
Last ObjectModification:
2015_12_28-PM-02_23_46
Theory : small!categories
Home
Index