Step
*
4
1
of Lemma
free-dist-lattice-adjunction
1. ∀Y:Type. (Point(free-dl(Y)) ~ free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. b1 : BoundedDistributiveLattice
4. b2 : BoundedDistributiveLattice
5. g : Hom(b1;b2)
6. x : Point(b1)
⊢ ((g o fdl-hom(b1;λg.g)) free-dl-generator(x))
= ((fdl-hom(b2;λg.g) o fdl-hom(free-dl(Point(b2));λx.free-dl-generator(g x))) free-dl-generator(x))
∈ Point(b2)
BY
{ RepUR ``compose`` 0 }
1
1. ∀Y:Type. (Point(free-dl(Y)) ~ free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. b1 : BoundedDistributiveLattice
4. b2 : BoundedDistributiveLattice
5. g : Hom(b1;b2)
6. x : Point(b1)
⊢ (g (fdl-hom(b1;λg.g) free-dl-generator(x)))
= (fdl-hom(b2;λg.g) (fdl-hom(free-dl(Point(b2));λx.free-dl-generator(g x)) free-dl-generator(x)))
∈ Point(b2)
Latex:
Latex:
1.  \mforall{}Y:Type.  (Point(free-dl(Y))  \msim{}  free-dl-type(Y))
2.  \mforall{}Y:Type.  \mforall{}y:Y.    (free-dl-generator(y)  \mmember{}  Point(free-dl(Y)))
3.  b1  :  BoundedDistributiveLattice
4.  b2  :  BoundedDistributiveLattice
5.  g  :  Hom(b1;b2)
6.  x  :  Point(b1)
\mvdash{}  ((g  o  fdl-hom(b1;\mlambda{}g.g))  free-dl-generator(x))
=  ((fdl-hom(b2;\mlambda{}g.g)  o  fdl-hom(free-dl(Point(b2));\mlambda{}x.free-dl-generator(g  x)))  free-dl-generator(x))
By
Latex:
RepUR  ``compose``  0
Home
Index