Step * 4 1 1 of Lemma free-dist-lattice-adjunction


1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. b1 BoundedDistributiveLattice
4. b2 BoundedDistributiveLattice
5. Hom(b1;b2)
6. Point(b1)
⊢ (g (fdl-hom(b1;λg.g) free-dl-generator(x)))
(fdl-hom(b2;λg.g) (fdl-hom(free-dl(Point(b2));λx.free-dl-generator(g x)) free-dl-generator(x)))
∈ Point(b2)
BY
((InstLemma `fdl-hom-agrees` [⌜Point(b1)⌝;⌜free-dl(Point(b2))⌝;⌜λx.free-dl-generator(g x)⌝;⌜x⌝]⋅ THENA Auto)
   THEN Reduce -1
   }

1
1. ∀Y:Type. (Point(free-dl(Y)) free-dl-type(Y))
2. ∀Y:Type. ∀y:Y.  (free-dl-generator(y) ∈ Point(free-dl(Y)))
3. b1 BoundedDistributiveLattice
4. b2 BoundedDistributiveLattice
5. Hom(b1;b2)
6. Point(b1)
7. (fdl-hom(free-dl(Point(b2));λx.free-dl-generator(g x)) free-dl-generator(x))
free-dl-generator(g x)
∈ Point(free-dl(Point(b2)))
⊢ (g (fdl-hom(b1;λg.g) free-dl-generator(x)))
(fdl-hom(b2;λg.g) (fdl-hom(free-dl(Point(b2));λx.free-dl-generator(g x)) free-dl-generator(x)))
∈ Point(b2)


Latex:


Latex:

1.  \mforall{}Y:Type.  (Point(free-dl(Y))  \msim{}  free-dl-type(Y))
2.  \mforall{}Y:Type.  \mforall{}y:Y.    (free-dl-generator(y)  \mmember{}  Point(free-dl(Y)))
3.  b1  :  BoundedDistributiveLattice
4.  b2  :  BoundedDistributiveLattice
5.  g  :  Hom(b1;b2)
6.  x  :  Point(b1)
\mvdash{}  (g  (fdl-hom(b1;\mlambda{}g.g)  free-dl-generator(x)))
=  (fdl-hom(b2;\mlambda{}g.g)  (fdl-hom(free-dl(Point(b2));\mlambda{}x.free-dl-generator(g  x))  free-dl-generator(x)))


By


Latex:
((InstLemma  `fdl-hom-agrees`  [\mkleeneopen{}Point(b1)\mkleeneclose{};\mkleeneopen{}free-dl(Point(b2))\mkleeneclose{};\mkleeneopen{}\mlambda{}x.free-dl-generator(g  x)\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
    THENA  Auto
    )
  THEN  Reduce  -1
  )




Home Index