Step * 2 1 1 of Lemma functor-curry-iso


1. SmallCategory
2. SmallCategory
3. SmallCategory
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((ob(functor-comp(functor-curry(A;B);functor-uncurry(C))) x) x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) f) a) (ob(f) a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. Functor(A;FUN(B;C))
10. x1 cat-ob(A)
11. cat-ob(A)
12. cat-arrow(A) x1 y
⊢ (arrow(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) x1 f)
(arrow(x) x1 f)
∈ (cat-arrow(FUN(B;C)) (ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) x1) 
   (ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) y))
BY
(BLemma `nat-trans-equal2` THENW (Try ((InferEqualType THEN Reduce 0⋅ THEN RWW "7" THEN Auto)) THEN Auto)) }

1
1. SmallCategory
2. SmallCategory
3. SmallCategory
4. functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C))
5. functor-curry(A;B) ∈ Functor(FUN(A × B;C);FUN(A;FUN(B;C)))
6. ∀x:Functor(A × B;C). ((ob(functor-comp(functor-curry(A;B);functor-uncurry(C))) x) x ∈ Functor(A × B;C))
7. ∀f:Functor(A;FUN(B;C)). ∀a:cat-ob(A).
     ((ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) f) a) (ob(f) a) ∈ cat-ob(FUN(B;C)))
8. functor-curry(A;B)functor-uncurry(C)=1
9. Functor(A;FUN(B;C))
10. x1 cat-ob(A)
11. cat-ob(A)
12. cat-arrow(A) x1 y
⊢ (arrow(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) x1 f)
(arrow(x) x1 f)
∈ (A1:cat-ob(B) ⟶ (cat-arrow(C) (ob(ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) x1) A1) 
                    (ob(ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B))) x) y) A1)))


Latex:


Latex:

1.  A  :  SmallCategory
2.  B  :  SmallCategory
3.  C  :  SmallCategory
4.  functor-uncurry(C)  \mmember{}  Functor(FUN(A;FUN(B;C));FUN(A  \mtimes{}  B;C))
5.  functor-curry(A;B)  \mmember{}  Functor(FUN(A  \mtimes{}  B;C);FUN(A;FUN(B;C)))
6.  \mforall{}x:Functor(A  \mtimes{}  B;C).  ((ob(functor-comp(functor-curry(A;B);functor-uncurry(C)))  x)  =  x)
7.  \mforall{}f:Functor(A;FUN(B;C)).  \mforall{}a:cat-ob(A).
          ((ob(ob(functor-comp(functor-uncurry(C);functor-curry(A;B)))  f)  a)  =  (ob(f)  a))
8.  functor-curry(A;B)functor-uncurry(C)=1
9.  x  :  Functor(A;FUN(B;C))
10.  x1  :  cat-ob(A)
11.  y  :  cat-ob(A)
12.  f  :  cat-arrow(A)  x1  y
\mvdash{}  (arrow(ob(functor-comp(functor-uncurry(C);functor-curry(A;B)))  x)  x1  y  f)  =  (arrow(x)  x1  y  f)


By


Latex:
(BLemma  `nat-trans-equal2`
  THENW  (Try  ((InferEqualType  THEN  Reduce  0\mcdot{}  THEN  RWW  "7"  0  THEN  Auto))  THEN  Auto)
  )




Home Index