Nuprl Lemma : functor-curry-iso
∀A,B,C:SmallCategory.  cat-isomorphic(Cat;FUN(A × B;C);FUN(A;FUN(B;C)))
Proof
Definitions occuring in Statement : 
product-cat: A × B
, 
cat-cat: Cat
, 
functor-cat: FUN(C1;C2)
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
small-category: SmallCategory
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
functor-uncurry: functor-uncurry(C)
, 
functor-curry: functor-curry(A;B)
, 
functor-comp: functor-comp(F;G)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cat-isomorphic: cat-isomorphic(C;x;y)
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-cat: Cat
, 
and: P ∧ Q
, 
prop: ℙ
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cand: A c∧ B
, 
cat-inverse: fg=1
, 
cat-ob: cat-ob(C)
, 
implies: P 
⇒ Q
, 
true: True
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat-trans: nat-trans(C;D;F;G)
, 
id_functor: 1
, 
label: ...$L... t
Lemmas referenced : 
functor-uncurry_wf, 
functor-curry_wf, 
equal-functors, 
product-cat_wf, 
functor-ob_wf, 
functor-cat_wf, 
functor-comp_wf, 
functor_cat_ob_lemma, 
cat-ob_wf, 
ob_product_lemma, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
arrow_prod_lemma, 
ap_mk_nat_trans_lemma, 
cat-arrow_wf, 
cat-functor_wf, 
subtype_rel_self, 
all_wf, 
equal_wf, 
cat-id_wf, 
cat-comp_wf, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
cat-inverse_wf, 
cat-cat_wf, 
cat_ob_pair_lemma, 
cat-isomorphism_wf, 
small-category_wf, 
functor-arrow_wf, 
pi2_wf, 
functor_cat_arrow_lemma, 
squash_wf, 
true_wf, 
functor-arrow-prod-comp, 
cat-comp-ident2, 
cat-comp-ident1, 
iff_weakening_equal, 
functor-arrow-id, 
nat-trans-equation, 
functor_cat_id_lemma, 
ident_trans_ap_lemma, 
id_functor_wf, 
nat-trans_wf, 
nat-trans-equal2, 
member_wf, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
productEquality, 
functionEquality, 
functionExtensionality, 
independent_pairFormation, 
instantiate, 
independent_functionElimination, 
natural_numberEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
hyp_replacement
Latex:
\mforall{}A,B,C:SmallCategory.    cat-isomorphic(Cat;FUN(A  \mtimes{}  B;C);FUN(A;FUN(B;C)))
Date html generated:
2017_10_05-AM-00_48_56
Last ObjectModification:
2017_07_28-AM-09_20_02
Theory : small!categories
Home
Index