Nuprl Lemma : functor-curry-iso

A,B,C:SmallCategory.  cat-isomorphic(Cat;FUN(A × B;C);FUN(A;FUN(B;C)))


Proof




Definitions occuring in Statement :  product-cat: A × B cat-cat: Cat functor-cat: FUN(C1;C2) cat-isomorphic: cat-isomorphic(C;x;y) small-category: SmallCategory all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T top: Top subtype_rel: A ⊆B uimplies: supposing a functor-uncurry: functor-uncurry(C) functor-curry: functor-curry(A;B) functor-comp: functor-comp(F;G) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) cat-isomorphic: cat-isomorphic(C;x;y) exists: x:A. B[x] guard: {T} cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-cat: Cat and: P ∧ Q prop: cat-isomorphism: cat-isomorphism(C;x;y;f) cand: c∧ B cat-inverse: fg=1 cat-ob: cat-ob(C) implies:  Q true: True squash: T iff: ⇐⇒ Q rev_implies:  Q nat-trans: nat-trans(C;D;F;G) id_functor: 1 label: ...$L... t
Lemmas referenced :  functor-uncurry_wf functor-curry_wf equal-functors product-cat_wf functor-ob_wf functor-cat_wf functor-comp_wf functor_cat_ob_lemma cat-ob_wf ob_product_lemma ob_mk_functor_lemma arrow_mk_functor_lemma arrow_prod_lemma ap_mk_nat_trans_lemma cat-arrow_wf cat-functor_wf subtype_rel_self all_wf equal_wf cat-id_wf cat-comp_wf cat_arrow_triple_lemma cat_comp_tuple_lemma cat_id_tuple_lemma cat-inverse_wf cat-cat_wf cat_ob_pair_lemma cat-isomorphism_wf small-category_wf functor-arrow_wf pi2_wf functor_cat_arrow_lemma squash_wf true_wf functor-arrow-prod-comp cat-comp-ident2 cat-comp-ident1 iff_weakening_equal functor-arrow-id nat-trans-equation functor_cat_id_lemma ident_trans_ap_lemma id_functor_wf nat-trans_wf nat-trans-equal2 member_wf subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis applyEquality sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaEquality independent_isectElimination productElimination independent_pairEquality dependent_pairFormation equalityTransitivity equalitySymmetry setEquality productEquality functionEquality functionExtensionality independent_pairFormation instantiate independent_functionElimination natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed setElimination rename hyp_replacement

Latex:
\mforall{}A,B,C:SmallCategory.    cat-isomorphic(Cat;FUN(A  \mtimes{}  B;C);FUN(A;FUN(B;C)))



Date html generated: 2017_10_05-AM-00_48_56
Last ObjectModification: 2017_07_28-AM-09_20_02

Theory : small!categories


Home Index