Nuprl Lemma : ident_trans_ap_lemma
∀A,F,D,C:Top.  (identity-trans(C;D;F) A ~ cat-id(D) (ob(F) A))
Proof
Definitions occuring in Statement : 
identity-trans: identity-trans(C;D;F)
, 
functor-ob: ob(F)
, 
cat-id: cat-id(C)
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
identity-trans: identity-trans(C;D;F)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
ap_mk_nat_trans_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation
Latex:
\mforall{}A,F,D,C:Top.    (identity-trans(C;D;F)  A  \msim{}  cat-id(D)  (ob(F)  A))
Date html generated:
2017_01_19-PM-02_52_48
Last ObjectModification:
2017_01_11-PM-02_00_37
Theory : small!categories
Home
Index