Nuprl Lemma : ident_trans_ap_lemma

A,F,D,C:Top.  (identity-trans(C;D;F) cat-id(D) (ob(F) A))


Proof




Definitions occuring in Statement :  identity-trans: identity-trans(C;D;F) functor-ob: ob(F) cat-id: cat-id(C) top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  identity-trans: identity-trans(C;D;F) all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ap_mk_nat_trans_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation

Latex:
\mforall{}A,F,D,C:Top.    (identity-trans(C;D;F)  A  \msim{}  cat-id(D)  (ob(F)  A))



Date html generated: 2017_01_19-PM-02_52_48
Last ObjectModification: 2017_01_11-PM-02_00_37

Theory : small!categories


Home Index