Nuprl Lemma : cat-comp-ident2

[C:SmallCategory]. ∀x,y:cat-ob(C). ∀f:cat-arrow(C) y.  ((cat-comp(C) (cat-id(C) y)) f ∈ (cat-arrow(C) y))


Proof




Definitions occuring in Statement :  cat-comp: cat-comp(C) cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  cat-comp-ident cat-arrow_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination hypothesis applyEquality sqequalRule lambdaEquality axiomEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}x,y:cat-ob(C).  \mforall{}f:cat-arrow(C)  x  y.    ((cat-comp(C)  x  y  y  f  (cat-id(C)  y))  =  f)



Date html generated: 2017_01_19-PM-02_52_02
Last ObjectModification: 2017_01_11-PM-02_09_42

Theory : small!categories


Home Index