Nuprl Lemma : cat-inverse_wf

[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) y]. ∀[g:cat-arrow(C) x].  (fg=1 ∈ ℙ)


Proof




Definitions occuring in Statement :  cat-inverse: fg=1 cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] prop: member: t ∈ T apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cat-inverse: fg=1
Lemmas referenced :  equal_wf cat-arrow_wf cat-comp_wf cat-id_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].  \mforall{}[g:cat-arrow(C)  y  x].    (fg=1  \mmember{}  \mBbbP{})



Date html generated: 2017_01_09-AM-09_11_00
Last ObjectModification: 2017_01_08-PM-00_30_55

Theory : small!categories


Home Index