Nuprl Lemma : nat-trans-equation

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[T:nat-trans(C;D;F;G)]. ∀[A,B:cat-ob(C)]. ∀[g:cat-arrow(C) B].
  ((cat-comp(D) (functor-ob(F) A) (functor-ob(G) A) (functor-ob(G) B) (T A) (functor-arrow(G) g))
  (cat-comp(D) (functor-ob(F) A) (functor-ob(F) B) (functor-ob(G) B) (functor-arrow(F) g) (T B))
  ∈ (cat-arrow(D) (functor-ob(F) A) (functor-ob(G) B)))


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) functor-arrow: functor-arrow(F) functor-ob: functor-ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] nat-trans: nat-trans(C;D;F;G) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  small-category_wf cat-functor_wf nat-trans_wf cat-ob_wf cat-arrow_wf
Rules used in proof :  because_Cache axiomEquality isect_memberEquality sqequalRule isectElimination extract_by_obid applyEquality hypothesisEquality dependent_functionElimination hypothesis rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[T:nat-trans(C;D;F;G)].  \mforall{}[A,B:cat-ob(C)].
\mforall{}[g:cat-arrow(C)  A  B].
    ((cat-comp(D)  (functor-ob(F)  A)  (functor-ob(G)  A)  (functor-ob(G)  B)  (T  A) 
        (functor-arrow(G)  A  B  g))
    =  (cat-comp(D)  (functor-ob(F)  A)  (functor-ob(F)  B)  (functor-ob(G)  B)  (functor-arrow(F)  A  B  g) 
          (T  B)))



Date html generated: 2017_01_11-AM-09_18_01
Last ObjectModification: 2017_01_10-PM-00_07_17

Theory : small!categories


Home Index