Nuprl Lemma : functor-arrow-prod-comp

[A,B,C:SmallCategory]. ∀[F:Functor(A × B;C)]. ∀[a1,a2,a3:cat-ob(A)]. ∀[f:cat-arrow(A) a1 a2]. ∀[g:cat-arrow(A) a2 a3].
[b1,b2,b3:cat-ob(B)]. ∀[h:cat-arrow(B) b1 b2]. ∀[k:cat-arrow(B) b2 b3].
  ((cat-comp(C) (ob(F) <a1, b1>(ob(F) <a2, b2>(ob(F) <a3, b3>(arrow(F) <a1, b1> <a2, b2> <f, h>(arrow(F) <a2, b2\000C> <a3, b3> <g, k>))
  (arrow(F) <a1, b1> <a3, b3> <cat-comp(A) a1 a2 a3 g, cat-comp(B) b1 b2 b3 k>)
  ∈ (cat-arrow(C) (ob(F) <a1, b1>(ob(F) <a3, b3>)))


Proof




Definitions occuring in Statement :  product-cat: A × B functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] apply: a pair: <a, b> equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t)
Lemmas referenced :  functor-arrow-comp product-cat_wf ob_product_lemma arrow_prod_lemma cat-arrow_wf comp_product_cat_lemma cat-ob_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairEquality because_Cache applyEquality lambdaEquality productEquality equalitySymmetry

Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A  \mtimes{}  B;C)].  \mforall{}[a1,a2,a3:cat-ob(A)].  \mforall{}[f:cat-arrow(A)  a1  a2].
\mforall{}[g:cat-arrow(A)  a2  a3].  \mforall{}[b1,b2,b3:cat-ob(B)].  \mforall{}[h:cat-arrow(B)  b1  b2].  \mforall{}[k:cat-arrow(B)  b2  b3].
    ((cat-comp(C)  (ob(F)  <a1,  b1>)  (ob(F)  <a2,  b2>)  (ob(F)  <a3,  b3>)  (arrow(F)  <a1,  b1>  <a2,  b2>  <f,  h\000C>)  (arrow(F)  <a2,  b2>  <a3,  b3>  <g,  k>))
    =  (arrow(F)  <a1,  b1>  <a3,  b3>  <cat-comp(A)  a1  a2  a3  f  g,  cat-comp(B)  b1  b2  b3  h  k>))



Date html generated: 2017_01_19-PM-02_54_12
Last ObjectModification: 2017_01_11-PM-03_20_05

Theory : small!categories


Home Index