Nuprl Lemma : functor-uncurry_wf
∀[A,B,C:SmallCategory].  (functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C)))
Proof
Definitions occuring in Statement : 
functor-uncurry: functor-uncurry(C), 
product-cat: A × B, 
functor-cat: FUN(C1;C2), 
cat-functor: Functor(C1;C2), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
pi1: fst(t), 
subtype_rel: A ⊆r B, 
cat-ob: cat-ob(C), 
functor-cat: FUN(C1;C2), 
cat-functor: Functor(C1;C2), 
pi2: snd(t), 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
nat-trans: nat-trans(C;D;F;G), 
uimplies: b supposing a, 
so_apply: x[s1;s2;s3], 
functor-uncurry: functor-uncurry(C), 
trans-comp: t1 o t2, 
squash: ↓T, 
prop: ℙ, 
cat-arrow: cat-arrow(C), 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
identity-trans: identity-trans(C;D;F)
Lemmas referenced : 
functor_cat_ob_lemma, 
istype-void, 
mk-functor_wf, 
product-cat_wf, 
functor-ob_wf, 
functor-cat_wf, 
ob_product_lemma, 
subtype_rel_self, 
cat-functor_wf, 
cat-ob_wf, 
cat-comp_wf, 
functor-arrow_wf, 
arrow_prod_lemma, 
functor_cat_arrow_lemma, 
cat-arrow_wf, 
pi1_wf_top, 
subtype_rel_product, 
top_wf, 
pi2_wf, 
mk-nat-trans_wf, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
functor_cat_comp_lemma, 
trans_comp_ap_lemma, 
squash_wf, 
all_wf, 
equal_wf, 
comp_product_cat_lemma, 
id_prod_cat_lemma, 
ap_mk_nat_trans_lemma, 
functor_cat_id_lemma, 
ident_trans_ap_lemma, 
small-category_wf, 
nat-trans_wf, 
cat-id_wf, 
true_wf, 
istype-universe, 
functor-arrow-comp, 
cat-comp-assoc, 
nat-trans-equation, 
nat-trans-comp-equation, 
nat-trans-assoc-comp-equation, 
nat-trans-assoc-equation, 
iff_weakening_equal, 
functor-arrow-id, 
cat-comp-ident2, 
cat-comp-ident1, 
trans-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
lambdaEquality_alt, 
applyEquality, 
because_Cache, 
productElimination, 
universeIsType, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
independent_isectElimination, 
imageElimination, 
functionIsType, 
imageMemberEquality, 
baseClosed, 
axiomEquality, 
isectIsTypeImplies, 
natural_numberEquality, 
instantiate, 
universeEquality, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}[A,B,C:SmallCategory].    (functor-uncurry(C)  \mmember{}  Functor(FUN(A;FUN(B;C));FUN(A  \mtimes{}  B;C)))
Date html generated:
2019_10_31-AM-07_24_44
Last ObjectModification:
2018_12_13-AM-10_03_58
Theory : small!categories
Home
Index