Nuprl Lemma : functor-uncurry_wf

[A,B,C:SmallCategory].  (functor-uncurry(C) ∈ Functor(FUN(A;FUN(B;C));FUN(A × B;C)))


Proof




Definitions occuring in Statement :  functor-uncurry: functor-uncurry(C) product-cat: A × B functor-cat: FUN(C1;C2) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] top: Top so_lambda: λ2x.t[x] pi1: fst(t) subtype_rel: A ⊆B cat-ob: cat-ob(C) functor-cat: FUN(C1;C2) cat-functor: Functor(C1;C2) pi2: snd(t) so_apply: x[s] so_lambda: so_lambda(x,y,z.t[x; y; z]) nat-trans: nat-trans(C;D;F;G) uimplies: supposing a so_apply: x[s1;s2;s3] functor-uncurry: functor-uncurry(C) trans-comp: t1 t2 squash: T prop: cat-arrow: cat-arrow(C) true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q identity-trans: identity-trans(C;D;F)
Lemmas referenced :  functor_cat_ob_lemma istype-void mk-functor_wf product-cat_wf functor-ob_wf functor-cat_wf ob_product_lemma subtype_rel_self cat-functor_wf cat-ob_wf cat-comp_wf functor-arrow_wf arrow_prod_lemma functor_cat_arrow_lemma cat-arrow_wf pi1_wf_top subtype_rel_product top_wf pi2_wf mk-nat-trans_wf ob_mk_functor_lemma arrow_mk_functor_lemma functor_cat_comp_lemma trans_comp_ap_lemma squash_wf all_wf equal_wf comp_product_cat_lemma id_prod_cat_lemma ap_mk_nat_trans_lemma functor_cat_id_lemma ident_trans_ap_lemma small-category_wf nat-trans_wf cat-id_wf true_wf istype-universe functor-arrow-comp cat-comp-assoc nat-trans-equation nat-trans-comp-equation nat-trans-assoc-comp-equation nat-trans-assoc-equation iff_weakening_equal functor-arrow-id cat-comp-ident2 cat-comp-ident1 trans-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis isectElimination hypothesisEquality lambdaEquality_alt applyEquality because_Cache productElimination universeIsType setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry productIsType independent_isectElimination imageElimination functionIsType imageMemberEquality baseClosed axiomEquality isectIsTypeImplies natural_numberEquality instantiate universeEquality independent_functionElimination applyLambdaEquality

Latex:
\mforall{}[A,B,C:SmallCategory].    (functor-uncurry(C)  \mmember{}  Functor(FUN(A;FUN(B;C));FUN(A  \mtimes{}  B;C)))



Date html generated: 2019_10_31-AM-07_24_44
Last ObjectModification: 2018_12_13-AM-10_03_58

Theory : small!categories


Home Index