Nuprl Lemma : trans_comp_ap_lemma

A,t2,t1,H,G,F,D,C:Top.  (t1 t2 cat-comp(D) (ob(F) A) (ob(G) A) (ob(H) A) (t1 A) (t2 A))


Proof




Definitions occuring in Statement :  trans-comp: t1 t2 functor-ob: ob(F) cat-comp: cat-comp(C) top: Top all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  trans-comp: t1 t2 all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  ap_mk_nat_trans_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation

Latex:
\mforall{}A,t2,t1,H,G,F,D,C:Top.    (t1  o  t2  A  \msim{}  cat-comp(D)  (ob(F)  A)  (ob(G)  A)  (ob(H)  A)  (t1  A)  (t2  A))



Date html generated: 2017_01_19-PM-02_52_51
Last ObjectModification: 2017_01_11-PM-01_57_55

Theory : small!categories


Home Index