Nuprl Lemma : trans-comp_wf
∀[C,D:SmallCategory]. ∀[F,G,H:Functor(C;D)]. ∀[t1:nat-trans(C;D;F;G)]. ∀[t2:nat-trans(C;D;G;H)].
(t1 o t2 ∈ nat-trans(C;D;F;H))
Proof
Definitions occuring in Statement :
trans-comp: t1 o t2
,
nat-trans: nat-trans(C;D;F;G)
,
cat-functor: Functor(C1;C2)
,
small-category: SmallCategory
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
trans-comp: t1 o t2
,
so_lambda: λ2x.t[x]
,
nat-trans: nat-trans(C;D;F;G)
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
true: True
,
squash: ↓T
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
mk-nat-trans_wf,
cat-comp_wf,
functor-ob_wf,
cat-ob_wf,
cat-arrow_wf,
nat-trans_wf,
cat-functor_wf,
small-category_wf,
functor-arrow_wf,
equal_wf,
squash_wf,
true_wf,
cat-comp-assoc,
nat-trans-equation,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
because_Cache,
hypothesis,
setElimination,
rename,
independent_isectElimination,
lambdaFormation,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
natural_numberEquality,
imageElimination,
universeEquality,
dependent_functionElimination,
imageMemberEquality,
baseClosed,
productElimination,
independent_functionElimination
Latex:
\mforall{}[C,D:SmallCategory]. \mforall{}[F,G,H:Functor(C;D)]. \mforall{}[t1:nat-trans(C;D;F;G)]. \mforall{}[t2:nat-trans(C;D;G;H)].
(t1 o t2 \mmember{} nat-trans(C;D;F;H))
Date html generated:
2017_10_05-AM-00_46_14
Last ObjectModification:
2017_07_28-AM-09_19_21
Theory : small!categories
Home
Index