Nuprl Lemma : nat-trans-equal2

[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[A,B:nat-trans(C;D;F;G)].
  B ∈ nat-trans(C;D;F;G) supposing B ∈ (A:cat-ob(C) ⟶ (cat-arrow(D) (ob(F) A) (ob(G) A)))


Proof




Definitions occuring in Statement :  nat-trans: nat-trans(C;D;F;G) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat-trans: nat-trans(C;D;F;G) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf squash_wf true_wf cat-arrow_wf functor-ob_wf nat-trans-equation cat-comp_wf functor-arrow_wf cat-ob_wf iff_weakening_equal all_wf nat-trans_wf cat-functor_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache functionExtensionality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination dependent_set_memberEquality functionEquality setElimination rename isect_memberEquality axiomEquality

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[A,B:nat-trans(C;D;F;G)].    A  =  B  supposing  A  =  B



Date html generated: 2017_10_05-AM-00_46_08
Last ObjectModification: 2017_07_28-AM-09_19_17

Theory : small!categories


Home Index