Nuprl Lemma : nat-trans-equal2
∀[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[A,B:nat-trans(C;D;F;G)].
  A = B ∈ nat-trans(C;D;F;G) supposing A = B ∈ (A:cat-ob(C) ⟶ (cat-arrow(D) (ob(F) A) (ob(G) A)))
Proof
Definitions occuring in Statement : 
nat-trans: nat-trans(C;D;F;G)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
nat-trans: nat-trans(C;D;F;G)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
cat-arrow_wf, 
functor-ob_wf, 
nat-trans-equation, 
cat-comp_wf, 
functor-arrow_wf, 
cat-ob_wf, 
iff_weakening_equal, 
all_wf, 
nat-trans_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
functionEquality, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[A,B:nat-trans(C;D;F;G)].    A  =  B  supposing  A  =  B
Date html generated:
2017_10_05-AM-00_46_08
Last ObjectModification:
2017_07_28-AM-09_19_17
Theory : small!categories
Home
Index