Nuprl Lemma : cat-isomorphism_wf

[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) y].  (cat-isomorphism(C;x;y;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  cat-isomorphism: cat-isomorphism(C;x;y;f) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] prop: member: t ∈ T apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cat-isomorphism: cat-isomorphism(C;x;y;f) so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf cat-arrow_wf cat-inverse_wf cat-ob_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis lambdaEquality productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].    (cat-isomorphism(C;x;y;f)  \mmember{}  \mBbbP{})



Date html generated: 2017_01_09-AM-09_11_13
Last ObjectModification: 2017_01_08-PM-01_05_58

Theory : small!categories


Home Index