Nuprl Lemma : cat-isomorphism_wf
∀[C:SmallCategory]. ∀[x,y:cat-ob(C)]. ∀[f:cat-arrow(C) x y].  (cat-isomorphism(C;x;y;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat-isomorphism: cat-isomorphism(C;x;y;f)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
cat-arrow_wf, 
cat-inverse_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[x,y:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  x  y].    (cat-isomorphism(C;x;y;f)  \mmember{}  \mBbbP{})
Date html generated:
2017_01_09-AM-09_11_13
Last ObjectModification:
2017_01_08-PM-01_05_58
Theory : small!categories
Home
Index