Nuprl Lemma : presheaf-cat_wf

[C:SmallCategory]. (Presheafs(C) ∈ SmallCategory')


Proof




Definitions occuring in Statement :  presheaf-cat: Presheafs(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-cat: Presheafs(C) subtype_rel: A ⊆B
Lemmas referenced :  functor-cat_wf op-cat_wf small-category-subtype type-cat_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[C:SmallCategory].  (Presheafs(C)  \mmember{}  SmallCategory')



Date html generated: 2017_10_05-AM-00_46_43
Last ObjectModification: 2017_10_02-PM-05_40_13

Theory : small!categories


Home Index