Step
*
4
1
1
of Lemma
presheaf-element-map_wf
.....set predicate.....
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A ⟶ B
5. A@0 : cat-ob(op-cat(C))
6. p1 : ob(A) A@0
⊢ (arrow(B) A@0 A@0 (cat-id(op-cat(C)) A@0) (m A@0 p1)) = (m A@0 p1) ∈ (ob(B) A@0)
BY
{ (InstLemma `functor-arrow-id` [⌜parm{i'}⌝;⌜op-cat(C)⌝;⌜TypeCat⌝;⌜B⌝;⌜A@0⌝]⋅ THENA Auto) }
1
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A ⟶ B
5. A@0 : cat-ob(op-cat(C))
6. p1 : ob(A) A@0
7. (arrow(B) A@0 A@0 (cat-id(op-cat(C)) A@0))
= (cat-id(TypeCat) (ob(B) A@0))
∈ (cat-arrow(TypeCat) (ob(B) A@0) (ob(B) A@0))
⊢ (arrow(B) A@0 A@0 (cat-id(op-cat(C)) A@0) (m A@0 p1)) = (m A@0 p1) ∈ (ob(B) A@0)
Latex:
Latex:
.....set predicate.....
1. C : SmallCategory
2. A : Presheaf(C)
3. B : Presheaf(C)
4. m : A {}\mrightarrow{} B
5. A@0 : cat-ob(op-cat(C))
6. p1 : ob(A) A@0
\mvdash{} (arrow(B) A@0 A@0 (cat-id(op-cat(C)) A@0) (m A@0 p1)) = (m A@0 p1)
By
Latex:
(InstLemma `functor-arrow-id` [\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}op-cat(C)\mkleeneclose{};\mkleeneopen{}TypeCat\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}A@0\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index