Nuprl Lemma : C_LVALUE-proper-Scomped
∀env:C_TYPE_env(). ∀lval:C_LVALUE(). ∀a:Atom.
  ((↑C_LVALUE-proper(env;LV_Scomp(lval;a))) ⇒ (↑C_Struct?(outl(C_TYPE-of-LVALUE(env;lval)))))
Proof
Definitions occuring in Statement : 
C_LVALUE-proper: C_LVALUE-proper(env;lval), 
C_TYPE-of-LVALUE: C_TYPE-of-LVALUE(env;lval), 
C_TYPE_env: C_TYPE_env(), 
LV_Scomp: LV_Scomp(lval;comp), 
C_LVALUE: C_LVALUE(), 
C_Struct?: C_Struct?(v), 
outl: outl(x), 
assert: ↑b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
atom: Atom
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
LV_Scomp?: LV_Scomp?(v), 
eq_atom: x =a y, 
pi1: fst(t), 
LV_Scomp: LV_Scomp(lval;comp), 
btrue: tt, 
true: True, 
let: let, 
LV_Scomp-lval: LV_Scomp-lval(v), 
pi2: snd(t), 
LV_Scomp-comp: LV_Scomp-comp(v), 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
C_LVALUE-proper-Scomp, 
LV_Scomp_wf, 
assert_wf, 
C_LVALUE-proper_wf, 
C_LVALUE_wf, 
C_TYPE_env_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
natural_numberEquality, 
sqequalRule, 
productElimination, 
atomEquality
Latex:
\mforall{}env:C\_TYPE\_env().  \mforall{}lval:C\_LVALUE().  \mforall{}a:Atom.
    ((\muparrow{}C\_LVALUE-proper(env;LV\_Scomp(lval;a)))  {}\mRightarrow{}  (\muparrow{}C\_Struct?(outl(C\_TYPE-of-LVALUE(env;lval)))))
 Date html generated: 
2016_05_16-AM-08_48_36
 Last ObjectModification: 
2015_12_28-PM-06_56_14
Theory : C-semantics
Home
Index