Nuprl Lemma : ancestral-logic-induction-ext
(∀x,y:Dom.  ((R x y) ⇒ (B x) ⇒ (B y))) ⇒ (∀x,y:Dom.  (TC(λa,b.R a b)(x,y) ⇒ (B x) ⇒ (B y)))
Proof
Definitions occuring in Statement : 
TC: TC(λx,y.F[x; y])(a,b), 
language1: language1{i:l}(D,A,B,C,P,Q,R,H.fml[D;A;B;C;P;Q;R;H]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a
Definitions unfolded in proof : 
member: t ∈ T, 
ancestral-logic-induction, 
TC-min-uniform, 
transitive-closure-minimal-uniform, 
spreadn: spread3
Lemmas referenced : 
ancestral-logic-induction, 
TC-min-uniform, 
transitive-closure-minimal-uniform
Rules used in proof : 
introduction, 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry
Latex:
(\mforall{}x,y:Dom.    ((R  x  y)  {}\mRightarrow{}  (B  x)  {}\mRightarrow{}  (B  y)))  {}\mRightarrow{}  (\mforall{}x,y:Dom.    (TC(\mlambda{}a,b.R  a  b)(x,y)  {}\mRightarrow{}  (B  x)  {}\mRightarrow{}  (B  y)))
 Date html generated: 
2016_05_16-AM-09_08_23
 Last ObjectModification: 
2015_12_28-PM-07_03_08
Theory : first-order!and!ancestral!logic
Home
Index