Nuprl Lemma : transitive-closure-minimal-uniform

[A:Type]. ∀[R,Q:A ⟶ A ⟶ ℙ].  (R =>  UniformlyTrans(A;x,y.x y)  TC(R) => Q)


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) rel_implies: R1 => R2 utrans: UniformlyTrans(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q rel_implies: R1 => R2 all: x:A. B[x] utrans: UniformlyTrans(T;x,y.E[x; y]) transitive-closure: TC(R) infix_ap: y member: t ∈ T subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: false: False cons: [a b] rel_path: rel_path(A;L;x;y) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] pi1: fst(t) pi2: snd(t) hd: hd(l) spreadn: spread3 uimplies: supposing a nat: ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T)
Lemmas referenced :  transitive-closure_wf subtype_rel_self utrans_wf rel_implies_wf istype-universe list-cases product_subtype_list list_ind_cons_lemma istype-void reduce_tl_cons_lemma subtype_rel-equal subtype_rel_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list_ind_nil_lemma list_accum_nil_lemma colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf list_accum_cons_lemma rel_path_wf istype-nat equal_wf subtype_rel_function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalHypSubstitution sqequalRule rename Error :universeIsType,  cut applyEquality introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis instantiate because_Cache Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :functionIsType,  universeEquality setElimination productElimination productEquality dependent_functionElimination unionElimination imageElimination voidElimination promote_hyp hypothesis_subsumption Error :isect_memberEquality_alt,  independent_isectElimination equalitySymmetry Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  Error :equalityIstype,  applyLambdaEquality equalityTransitivity hyp_replacement independent_functionElimination intWeakElimination natural_numberEquality approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality axiomEquality Error :functionIsTypeImplies,  baseApply closedConclusion baseClosed intEquality sqequalBase Error :isectIsType,  functionExtensionality

Latex:
\mforall{}[A:Type].  \mforall{}[R,Q:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    (R  =>  Q  {}\mRightarrow{}  UniformlyTrans(A;x,y.x  Q  y)  {}\mRightarrow{}  TC(R)  =>  Q)



Date html generated: 2019_06_20-PM-02_01_28
Last ObjectModification: 2018_12_07-AM-01_41_48

Theory : relations2


Home Index