Nuprl Lemma : add_ident

[i:ℤ]. (i (i 0) ∈ ℤ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality

Latex:
\mforall{}[i:\mBbbZ{}].  (i  =  (i  +  0))



Date html generated: 2016_05_13-PM-03_39_32
Last ObjectModification: 2015_12_26-AM-09_40_56

Theory : arithmetic


Home Index