Nuprl Lemma : add_ident
∀[i:ℤ]. (i = (i + 0) ∈ ℤ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality
Latex:
\mforall{}[i:\mBbbZ{}].  (i  =  (i  +  0))
Date html generated:
2016_05_13-PM-03_39_32
Last ObjectModification:
2015_12_26-AM-09_40_56
Theory : arithmetic
Home
Index