Nuprl Lemma : cbva-sqequal0
∀[a:Base]. let x ⟵ a in 0 ~ 0 supposing has-valueall(a)
Proof
Definitions occuring in Statement : 
has-valueall: has-valueall(a)
, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
prop: ℙ
Lemmas referenced : 
has-valueall_wf_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:Base].  let  x  \mleftarrow{}{}  a  in  0  \msim{}  0  supposing  has-valueall(a)
Date html generated:
2016_05_13-PM-03_28_42
Last ObjectModification:
2015_12_26-AM-09_48_10
Theory : arithmetic
Home
Index