Nuprl Lemma : cbva-sqequal0
∀[a:Base]. let x ⟵ a in 0 ~ 0 supposing has-valueall(a)
Proof
Definitions occuring in Statement :
has-valueall: has-valueall(a)
,
callbyvalueall: callbyvalueall,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
,
base: Base
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
prop: ℙ
Lemmas referenced :
has-valueall_wf_base,
base_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
callbyvalueReduce,
hypothesis,
sqequalAxiom,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[a:Base]. let x \mleftarrow{}{} a in 0 \msim{} 0 supposing has-valueall(a)
Date html generated:
2016_05_13-PM-03_28_42
Last ObjectModification:
2015_12_26-AM-09_48_10
Theory : arithmetic
Home
Index